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Preface to the electronic edition

This book was originally published by Cambridge University Press in June of 2002.
The entire print run was sold out in less than 16 months, and the book has been offi-
cially out of print since October of 2003. By agreement with Cambridge University
Press, this electronic edition is intended to make the book continually available via
the Internet at the World Wide Web site

http://www.giss.nasa.gov/~crmim/books.html

No significant revision of the text has been attempted; the pagination and the num-
bering of equations follow those of the original hardcopy edition. However, almost all
illustrations have been improved, several typos have been corrected, some minor im-
provements of the text have been made, and a few recent references have been added.

We express sincere gratitude to Andrew Mishchenko for excellent typesetting and
copy-editing work and to Nadia Zakharova and Lilly Del Valle for help with graphics.
The preparation of this electronic edition was sponsored by the NASA Radiation Sci-
ences Program managed by Donald Anderson.

We would greatly appreciate being informed of any typos and/or factual inaccura-
cies that you may find either in the original hardcopy edition of the book or in this
electronic release. Please communicate them to Michael Mishchenko at

crmim@giss.nasa.gov

Michael I. Mishchenko
Larry D. Travis

Andrew A. Lacis

New York
November 2006
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Preface to the original hardcopy edition

The phenomena of scattering, absorption, and emission of light and other electromag-
netic radiation by small particles are ubiquitous and, therefore, central to many science
and engineering disciplines.  Sunlight incident on the earth’s atmosphere is scattered by
gas molecules and suspended particles, giving rise to blue skies, white clouds, and vari-
ous optical displays such as rainbows, coronae, glories, and halos.  By scattering and
absorbing the incident solar radiation and the radiation emitted by the underlying surface,
cloud and aerosol particles affect the earth’s radiation budget.  The strong dependence of
the scattering interaction on particle size, shape, and refractive index makes measure-
ments of electromagnetic scattering a powerful noninvasive means of particle characteri-
zation in terrestrial and planetary remote sensing, biomedicine, engineering, and astro-
physics.  Meaningful interpretation of laboratory and field measurements and remote
sensing observations and the widespread need for calculations of reflection, transmission,
and emission properties of various particulate media require an understanding of the un-
derlying physics and accurate quantitative knowledge of the electromagnetic interaction
as a function of particle physical parameters.

This volume is intended to provide a thorough updated treatment of electromag-
netic scattering, absorption, and emission by small particles. Specifically, the book

● introduces a general formalism for the scattering, absorption, and emission of
light and other electromagnetic radiation by arbitrarily shaped and arbitrarily ori-
ented particles;

● discusses the relation of radiative transfer theory to single-scattering solutions of
Maxwell’s equations;

● describes exact theoretical methods and computer codes for calculating the scat-
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tering, absorption, and emission properties of arbitrarily shaped small particles;
● demonstrates how the scattering and absorption characteristics of small particles

depend on particle size, refractive index, shape, and orientation; and
● illustrates how the high efficiency and accuracy of existing theoretical and ex-

perimental techniques and the availability of fast scientific workstations can re-
sult in advanced physically based applications.

The book is intended for science professionals, engineers, and graduate students
working or specializing in a wide range of disciplines: optics, electromagnetics, opti-
cal and electrical engineering, biomedical optics, atmospheric radiation and remote
sensing, climate research, radar meteorology, planetary physics, oceanography, and
astrophysics.  We assume that the reader is familiar with the fundamentals of classical
electromagnetics, optics, and vector calculus. Otherwise the book is sufficiently self-
contained and provides explicit derivations of all important results.  Although not
formally a textbook, this volume can be a useful supplement to relevant graduate
courses.

The literature on electromagnetic scattering is notorious for discrepancies and in-
consistencies in the definition and usage of terms.  Among the commonly encoun-
tered differences are the use of right-handed as opposed to left-handed coordinate
systems, the use of the time-harmonic factor )iexp( tω−  versus ),iexp( tω  and the
way an angle of rotation is defined.  Because we extensively employ mathematical
techniques of the quantum theory of angular momentum and because we wanted to
make the book self-consistent, we use throughout only right-handed (spherical) coor-
dinate systems and always consider an angle of rotation positive if the rotation is per-
formed in the clockwise direction when one is looking in the positive direction of the
rotation axis (or in the direction of light propagation).  Also, we adopt the time-
harmonic factor ),iexp( tω−  which seems to be the preferred choice in the majority of
publications and implies a non-negative imaginary part of the relative refractive in-
dex.

Because the subject of electromagnetic scattering crosses the boundaries between
many disciplines, it was very difficult to develop a clear and unambiguous notation
system.  In many cases we found that the conventional symbol for a quantity in one
discipline was the same as the conventional symbol for a different quantity in another
discipline.  Although we have made an effort to reconcile tradition and simplicity
with the desire of having a unique symbol for every variable, some symbols ulti-
mately adopted for the book still represent more than one variable.  We hope, how-
ever, that the meaning of all symbols is clear from the context.  We denote vectors
using the Times bold font and matrices using the Arial bold or bold italic font.  Unit
vectors are denoted by a caret, whereas tensors, dyads, and dyadics are denoted by the
dyadic symbol .↔   The Times italic font is usually reserved for scalar variables.
However, the square root of minus one, the base of natural logarithms, and the differ-
ential sign are denoted by Times roman (upright) characters i, e, and d, respectively.
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A table containing the symbols used, their meaning and dimension, and the section
where they first appear is provided at the end of the book, to assist the reader.

We have not attempted to compile a comprehensive list of relevant publications
and often cite a book or a review article where further references can be found.  In
this regard, two books deserve to be mentioned specifically. The monograph by
Kerker (1969) provides a list of nearly a thousand papers on light scattering published
prior to 1970, while the recent book edited by Mishchenko et al. (2000a) lists nearly
1400 publications on all aspects of electromagnetic scattering by nonspherical and
heterogeneous particles.

We provide references to many relevant computer programs developed by various
research groups and individuals, including ourselves, and made publicly available
through the Internet. Easy accessibility of these programs can be beneficial both to
individuals who are mostly interested in applications and to those looking for sources
of benchmark results for testing their own codes. Although the majority of these pro-
grams have been extensively tested and are expected to generate reliable results in
most cases provided that they are used as instructed, it is not inconceivable that some
of them contain errors or idiosyncrasies.  Furthermore, input parameters can be used
that are outside the range of values for which results can be computed accurately.  For
these reasons the authors of this book and the publisher disclaim all liability for any
damage that may result from the use of the programs. In addition, although the pub-
lisher and the authors have used their best endeavors to ensure that the URLs for the
external websites referred to in this book are correct and active at the time of going to
press, the publisher and the authors have no responsibility for the websites and can
make no guarantee that a site will remain live or that the content is or will remain
appropriate.

Michael I. Mishchenko
Larry D. Travis

Andrew A. Lacis

New York
November 2001
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Part I

Basic Theory of Electromagnetic Scattering,
Absorption, and Emission





3

A parallel monochromatic beam of light propagates in a vacuum without any change
in its intensity or polarization state. However, interposing a small particle into the
beam, as illustrated in panel (a) of the diagram on the next page, causes several dis-
tinct effects.  First, the particle may convert some of the energy contained in the beam
into other forms of energy such as heat. This phenomenon is called absorption.  Sec-
ond, it extracts some of the incident energy and scatters it in all directions at the fre-
quency of the incident beam. This phenomenon is called elastic scattering and, in
general, gives rise to light with a polarization state different from that of the incident
beam. As a result of absorption and scattering, the energy of the incident beam is re-
duced by an amount equal to the sum of the absorbed and scattered energy.  This re-
duction is called extinction. The extinction rates for different polarization components
of the incident beam can be different. This phenomenon is called dichroism and may
cause a change in the polarization state of the beam after it passes the particle. In ad-
dition, if the absolute temperature of the particle is not equal to zero, then the particle
also emits radiation in all directions and at all frequencies, the distribution by fre-
quency being dependent on the temperature. This phenomenon is called thermal emis-
sion.

In electromagnetic terms, the parallel monochromatic beam of light is an oscillat-
ing plane electromagnetic wave, whereas the particle is an aggregation of a large
number of discrete elementary electric charges. The oscillating electromagnetic field
of the incident wave excites the charges to oscillate with the same frequency and
thereby radiate secondary electromagnetic waves. The superposition of the secondary
waves gives the total elastically scattered field. If the charges do not oscillate exactly
in phase or exactly in anti-phase with the incident field then there is dissipation of
electromagnetic energy into the object. This means that the object is absorbing and
scatters less total energy than it extracts from the incident wave. The combined effect
of scattering and absorption is to reduce the amount of energy contained in the inci-
dent wave. If the absolute temperature of the particle differs from zero, electron tran-
sitions from a higher to a lower energy level cause thermal emission of electromag-
netic energy at specific frequencies. For complex systems of molecules with a large
number of degrees of freedom, many different transitions produce spectral emission
lines so closely spaced that the resulting radiation spectrum becomes effectively con-
tinuous and includes emitted energy at all frequencies.

Electromagnetic scattering is a complex phenomenon because the secondary
waves generated by each oscillating charge also stimulate oscillations of all other
charges forming the particle. Furthermore, computation of the total scattered field by
superposing the secondary waves must take account of their phase differences, which
change every time the incidence and/or scattering direction is changed. Therefore, the
total scattered radiation depends on the way the charges are arranged to form the par-
ticle with respect to the incident and scattered directions.

Since the number of elementary charges forming a micrometer-sized particle is
extremely large, solving the scattering problem directly by computing and superpos-
ing all secondary waves is impracticable even with the aid of modern computers.
Fortunately, however, the same problem can be solved using the concepts of macro-
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In (a), (b), and (c) a parallel beam of light is incident from the left. (a) Far-field electromagnetic
scattering by an individual particle in the form of a single body or a fixed cluster. (b) Far-field
scattering by a small volume element composed of randomly positioned, widely separated par-
ticles. (c) Multiple scattering by a layer of randomly and sparsely distributed particles. On the
left of the layer, diffuse reflected light; on the right of the layer, diffuse transmitted light. On
the far right, the attenuated incident beam. (d) Each individual particle in the layer receives and
scatters both light from the incident beam, somewhat attenuated, and light diffusely scattered
from the other particles.
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scopic electromagnetics, which treat the large collection of charges as a macroscopic
body with a specific distribution of the refractive index. In this case the scattered field
can be computed by solving the Maxwell equations for the macroscopic electromag-
netic field subject to appropriate boundary conditions. This approach appears to be
quite manageable and forms the basis of the modern theory of electromagnetic scat-
tering by small particles.

We do not aim to cover all aspects of electromagnetic scattering and absorption by
a small particle and limit our treatment by imposing several well-defined restrictions,
as follows.

● We consider only the scattering of time-harmonic, monochromatic or quasi-
monochromatic light in that we assume that the amplitude of the incident
electric field is either constant or fluctuates with time much more slowly than
the time factor ),iexp( tω−  where ω  is the angular frequency and t is time.

● It is assumed that electromagnetic scattering occurs without frequency redis-
tribution, i.e., the scattered light has the same frequency as the incident light.
This restriction excludes inelastic scattering phenomena such as Raman and
Brillouin scattering and fluorescence.

● We consider only finite scattering particles and exclude such peculiar two-
dimensional scatterers as infinite cylinders.

● It is assumed that the unbounded host medium surrounding the scatterer is
homogeneous, linear, isotropic, and nonabsorbing.

● We study only scattering in the far-field zone, where the propagation of the
scattered wave is away from the particle, the electric field vector vibrates in
the plane perpendicular to the propagation direction, and the scattered field
amplitude decays inversely with distance from the particle.

By directly solving the Maxwell equations, one can find the field scattered by an
object in the form of a single body or a fixed cluster consisting of a limited number of
components. However, one often encounters situations in which light is scattered by a
very large group of particles forming a constantly varying spatial configuration. A
typical example is a cloud of water droplets or ice crystals in which the particles are
constantly moving, spinning, and even changing their shapes and sizes due to oscilla-
tions of the droplet surface, evaporation, condensation, sublimation, and melting.
Although such a particle collection can be treated at each given moment as a fixed
cluster, a typical measurement of light scattering takes a finite amount of time, over
which the spatial configuration of the component particles and their sizes, orienta-
tions, and/or shapes continuously and randomly change. Therefore, the registered
signal is in effect a statistical average over a large number of different cluster realiza-
tions.

A logical way of modeling the measurement of light scattering by a random col-
lection of particles would be to solve the Maxwell equations for a statistically repre-
sentative range of fixed clusters and then take the average. However, this approach
becomes prohibitively time consuming if the number of cluster components is large
and is impractical for objects such as clouds in planetary atmospheres, oceanic hydro-
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sols, or stellar dust envelopes. Moreover, in the traditional far-field scattering formal-
ism a cluster is treated as a single scatterer and it is assumed that the distance from the
cluster to the observation point is much larger than any linear dimension of the clus-
ter. This assumption may well be violated in laboratory and remote sensing measure-
ments, thereby making necessary explicit computations of the scattered light in the
near-field zone of the cluster as a whole.

Fortunately, particles forming a random group can often be considered as inde-
pendent scatterers. This means that the electromagnetic response of each particle in
the group can be calculated using the extinction and phase matrices that describe the
scattering of a plane electromagnetic wave by the same particle but placed in an infi-
nite homogeneous space in complete isolation from all other particles (panel (a) of the
diagram). In general, this becomes possible when (i) each particle resides in the far-
field zones of all the other particles forming the group, and (ii) scattering by individ-
ual particles is incoherent, i.e., there are no systematic phase relations between partial
waves scattered by individual particles during the time interval necessary to take the
measurement. As a consequence of condition (ii), the intensities (or, more generally,
the Stokes parameters) of the partial waves can be added without regard to phase. An
important exception is scattering in the exact forward direction, which is always co-
herent and causes attenuation of the incident wave.

The assumption of independent scattering greatly simplifies the problem of com-
puting light scattering by groups of randomly positioned, widely separated particles.
Consider first the situation when a plane wave illuminates a small volume element
containing a tenuous particle collection, as depicted schematically in panel (b) of the
diagram. Each particle is excited by the external field and the secondary fields scat-
tered by all other particles. However, if the number of particles is sufficiently small
and their separation is sufficiently large then the contribution of the secondary waves
to the field exciting each particle is much smaller than the external field. Therefore,
the total scattered field can be well approximated by the sum of the fields generated
by the individual particles in response to the external field in isolation from the other
particles. This approach is called the single-scattering approximation. By assuming
also that particle positions are sufficiently random, one can show that the optical cross
sections and the extinction and phase matrices of the volume element are obtained by
simply summing the respective characteristics of all constituent particles.
 When the scattering medium contains very many particles, the single-scattering
approximation is no longer valid. Now one must explicitly take into account that each
particle is illuminated by light scattered by other particles as well as by the (attenu-
ated) incident light, as illustrated in panels (c) and (d) of the diagram. This means that
each particle scatters light that has already been scattered by other particles, so that
the light inside the scattering medium and the light leaving the medium have a sig-
nificant multiply scattered (or diffuse) component. A traditional approach in this case
is to find the intensity and other Stokes parameters of the diffuse light by solving the
so-called radiative transfer equation. This technique still assumes that particles form-
ing the scattering medium are randomly positioned and widely separated and that the
extinction and phase matrices of each small volume element can be obtained by inco-
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herently adding the respective characteristics of the constituent particles.
Thus, the treatment of light scattering by a large group of randomly positioned,

widely separated particles can be partitioned into three consecutive steps:

● computation of the far-field scattering and absorption properties of an indi-
vidual particle by solving the Maxwell equations;

● computation of the scattering and absorption properties of a small volume
element containing a tenuous particle collection by using the single-scattering
approximation; and

● computation of multiple scattering by the entire particle group by solving the
radiative transfer equation supplemented by appropriate boundary conditions.

Although the last two steps are inherently approximate, they are far more practicable
than attempting to solve the Maxwell equations for large particle collections and usu-
ally provide results accurate enough for many applications. A notable exception is the
exact backscattering direction, where so-called self-avoiding reciprocal multiple-
scattering paths in the particle collection always interfere constructively and cause a
coherent intensity peak. This phenomenon is called coherent backscattering (or weak
photon localization) and is not explicitly described by the standard radiative transfer
theory.

When a group of randomly moving and spinning particles is illuminated by a
monochromatic, spatially coherent plane wave (e.g., laser light), the random con-
structive and destructive interference of the light scattered by individual particles
generates in the far-field zone a speckle pattern that fluctuates in time and space.  In
this book we eliminate the effect of fluctuations by assuming that the Stokes parame-
ters of the scattered light are averaged over a period of time much longer than the
typical period of the fluctuations. In other words, we deal with the average, static
component of the scattering pattern. Therefore, the subject of the book could be called
static light scattering. Although explicit measurements of the spatial and temporal
fluctuations of the speckle pattern are more complicated than measurements of the
averages, they can contain useful information about the particles complementary to
that carried by the mean Stokes parameters. Statistical analyses of light scattered by
systems of suspended particles are the subject of the discipline called photon correla-
tion spectroscopy (or dynamic light scattering) and form the basis of many well es-
tablished experimental techniques. For example, instruments for the measurement of
particle size and dispersity and laser Doppler velocimeters and transit anemometers
have been commercially available for many years. More recent research has demon-
strated the application of polarization fluctuation measurements to particle shape
characterization (Pitter et al. 1999; Jakeman 2000). Photon correlation spectroscopy is
not discussed in this volume;  the interested reader can find the necessary information
in the books by Cummins and Pike (1974, 1977), Pecora (1985), Brown (1993), Pike
and Abbiss (1997), and Berne and Pecora (2000) as well as in the recent feature issues
of Applied Optics edited by Meyer et al. (1997, 2001).
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Chapter 1

Polarization characteristics of electromagnetic
radiation

The analytical and numerical basis for describing scattering properties of media com-
posed of small discrete particles is formed by the classical electromagnetic theory.
Although there are several excellent textbooks outlining the fundamentals of this the-
ory, it is convenient for our purposes to begin with a summary of those concepts and
equations that are central to the subject of this book and will be used extensively in
the following chapters.

We start by formulating Maxwell’s equations and constitutive relations for time-
harmonic macroscopic electromagnetic fields and derive the simplest plane-wave
solution, which underlies the basic optical idea of a monochromatic parallel beam of
light.  This solution naturally leads to the introduction of such fundamental quantities
as the refractive index and the Stokes parameters. Finally, we define the concept of a
quasi-monochromatic beam of light and discuss its implications.

1.1 Maxwell’s equations, time-harmonic fields, and the
Poynting vector

The mathematical description of all classical optics phenomena is based on the set of
Maxwell’s equations for the macroscopic electromagnetic field at interior points in
matter, which in SI units are as follows (Jackson 1998):

,ρ=⋅∇ D    (1.1)

, 
t∂

∂−=×∇ BE    (1.2)

,0=⋅∇ B    (1.3)
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,
t∂

∂+=×∇ DJH    (1.4)

where t is time, E the electric and H the magnetic field, B the magnetic induction, D
the electric displacement, and ρ  and J the macroscopic (free) charge density and
current density, respectively.  All quantities entering Eqs. (1.1)–(1.4) are functions of
time and spatial coordinates. Implicit in the Maxwell equations is the continuity
equation

,0=⋅∇+
∂
∂ J

t
ρ    (1.5)

which can be derived by combining the time derivative of Eq. (1.1) with the diver-
gence of Eq. (1.4).  The vector fields entering Eqs. (1.1)–(1.4) are related by

,0 PED += ε     (1.6)

,1
0

MBH −=
µ

   (1.7)

where P is the electric polarization (average electric dipole moment per unit volume),
M is the magnetization (average magnetic dipole moment per unit volume), and 0ε
and 0µ  are the electric permittivity and the magnetic permeability of free space.
Equations (1.1)–(1.7) are insufficient for a unique determination of the electric and
magnetic fields from a given distribution of charges and currents and must be sup-
plemented with so-called constitutive relations:

,EJ σ=       (1.8)

,HB µ=    (1.9)

,0 EP χε=   (1.10)

where σ  is the conductivity, µ  the permeability, and χ  the electric susceptibility.
For linear and isotropic media, ,σ  ,µ  and χ  are scalars independent of the fields.
The microphysical derivation and the range of validity of the macroscopic Maxwell
equations are discussed in detail by Jackson (1998).

The Maxwell equations are strictly valid only for points in whose neighborhood
the physical properties of the medium, as characterized by ,σ  ,µ  and ,χ  vary con-
tinuously.  Across an interface separating one medium from another the field vectors
E, D, B, and H may be discontinuous.  The boundary conditions at such an interface
can be derived from the integral equivalents of the Maxwell equations (Jackson 1998)
and are as follows:

1. There is a discontinuity in the normal component of D:

,ˆ)( 12 Sρ=⋅− nDD              (1.11)
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where n̂  is the unit vector directed along the local normal to the interface sepa-
rating media 1 and 2 and pointing toward medium 2 and Sρ  is the surface
charge density (the charge per unit area).

2. There is a discontinuity in the tangential component of H:

,)(ˆ 12 SJHHn =−×  (1.12)

where SJ  is the surface current density.  However, media with finite conduc-
tivity cannot support surface currents, so that

ty).conductivi (finite    0)(ˆ 12 =−× HHn        (1.13)

3. The normal component of B and the tangential component of E are continuous:

,0ˆ)( 12 =⋅− nBB  (1.14)

.0)(ˆ 12 =−× EEn   (1.15)

The boundary conditions (1.11)–(1.15) are useful in solving the Maxwell equations in
different adjacent regions with continuous physical properties and then linking the
partial solutions to determine the fields throughout all space.

We assume that all fields and sources are time-harmonic and adopt the standard
practice of representing real time-dependent fields as real parts of the respective com-
plex fields, viz.,

],e)(e)([]e)(Re[),(Re),( ii
2
1i

c
ttttt ωωω rErErErErE ∗−− +≡==  (1.16)

where r is the position (radius) vector, ω  the angular frequency, ,1i −=  and the
asterisk denotes a complex-conjugate value. Then we can derive from Eqs. (1.1)–
(1.10)

,0)]([or            )()( =⋅∇=⋅∇ rErrD ερ  (1.17)

),(i)( rHrE ωµ=×∇   (1.18)

,0)]([ =⋅∇ rHµ   (1.19)

),(i)(i)()( rErDrJrH ωεω −=−=×∇   (1.20)

where

ω
σχεε i)1(0 ++=  (1.21)

is the (complex) permittivity.  Under the complex time-harmonic representation, the
constitutive coefficients ,σ  ,µ  and χ  can be frequency dependent and are not re-
stricted to be real (Jackson 1998).  For example, a complex permeability implies a
difference in phase between the real time-harmonic magnetic field H and the corre-
sponding real time-harmonic magnetic induction B.  We will show later that complex
ε  and/or µ  results in a non-zero imaginary part of the refractive index, Eq. (1.44),
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thereby causing the absorption of electromagnetic energy, Eq. (1.45), by converting it
into other forms of energy such as heat.

Note that the scalar or the vector product of two real vector fields is not equal to
the real part of the respective product of the corresponding complex vector fields.
Instead we have

),(),(),( tttc rbrar ⋅=
  ]e)(e)([]e)(e)([ iiii

4
1 tttt ωωωω rbrbrara ∗−∗− +⋅+=

  ]e)()()()(Re[ i2
2
1 tω−∗ ⋅+⋅= rbrarbra  (1.22)

and similarly for a vector product.  A common situation in practice is that the angular
frequency ω  is so high that a measuring instrument is not capable of following the
rapid oscillations of the instantaneous product values but rather responds to a time
average

),,(d
∆
1)(

∆  

  
tct

t
c

tt

t

′′=��

+

rr  (1.23)

where ∆t is a time interval long compared with .1 ω   Therefore, it follows from Eq.
(1.22) that for time averages of products, one must take the real part of the product of
one complex field with the complex conjugate of the other, e.g.,

.)]()(Re[)( 2
1 rbrar ∗⋅=��c  (1.24)

The flow of the electromagnetic energy is described by the so-called Poynting
vector S.  The expression for S can be derived by considering the conservation of
energy and taking into account that the magnetic field can do no work and that for a
local charge q the rate of doing work by the electric field is ),,()()( tq rErvr ⋅  where v
is the velocity of the charge.  Accordingly, consider the integral

)()(d
2
1

  
rErJ ⋅∗V

V
 (1.25)

over a finite volume V, whose real part gives the time-averaged rate of work done by
the electromagnetic field and which must be balanced by the corresponding rate of
decrease of the electromagnetic energy within V.  Using Eqs. (1.18) and (1.20) and
the vector identity

),()()( baabba ×∇⋅−×∇⋅=×⋅∇  (1.26)

we derive

)](i)([)(d
2
1)()(d

2
1

    
rDrHrErErJ ∗∗∗ −×∇⋅=⋅ ωVV

VV

   .)]}()()()([i)]()([{d
2
1

  
rHrBrDrErHrE ∗∗∗ ⋅−⋅−×⋅−∇= ωV

V

 (1.27)
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If we now define the complex Poynting vector

)]()([)( 2
1 rHrErS ∗×=  (1.28)

and the harmonic electric and magnetic energy densities

)],()([)(        )],()([)( 4
1

m4
1

e rHrBrrDrEr ∗∗ ⋅=⋅= ww  (1.29)

and use the Gauss theorem, we have instead of Eq. (1.27)

,0)]()([di2 ˆ)(d)()(d
2
1

me
      

=−+⋅+⋅∗ rrnrSrErJ wwVSV
VSV

ω  (1.30)

where the closed surface S bounds the volume V and n̂  is a unit vector in the direc-
tion of the local outward normal to the surface.  The real part of Eq. (1.30) manifests
the conservation of energy for the time-averaged quantities by requiring that the rate
of the total work done by the fields on the sources within the volume, the electromag-
netic energy flowing out through the volume boundary per unit time, and the time rate
of change of the electromagnetic energy within the volume add up to zero.  The time-
averaged Poynting vector �� )(rS  is equal to the real part of the complex Poynting
vector,

)],(Re[)( rSrS =��

and has the dimension of [energy/(area× time)].  The net rate W at which the electro-
magnetic energy crosses the surface S is

.ˆ)(d
  

nrS ⋅��−= SW
S

 (1.31)

The rate is positive if there is a net transfer of electromagnetic energy into the volume
V and is negative otherwise.

1.2 Plane-wave solution

A fundamental feature of the Maxwell equations is that they allow for a simple trav-
eling-wave solution, which represents the transport of electromagnetic energy from
one point to another and embodies the concept of a perfectly monochromatic parallel
beam of light.  This solution is a plane electromagnetic wave propagating in a homo-
geneous medium without sources and is given by

),iiexp(),(        ),iiexp(),( 0c0c tttt ωω −⋅=−⋅= rkHrHrkErE  (1.32)

where 0E  and 0H  are constant complex vectors.  The wave vector k is also constant
and may, in general, be complex:

,i IR kkk +=  (1.33)
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where Rk  and Ik  are real vectors.  We thus have

),iiexp()exp(),( RI0c tt ω−⋅⋅−= rkrkErE  (1.34)
).iiexp()exp(),( RI0c tt ω−⋅⋅−= rkrkHrH  (1.35)

)exp( I0 rkE ⋅−  and )exp( I0 rkH ⋅−  are the amplitudes of the electric and magnetic
waves, respectively, while tω−⋅rk R  is their phase.  Obviously, Rk  is normal to the
surfaces of constant phase, whereas Ik  is normal to the surfaces of constant ampli-
tude.  (A plane surface normal to a real vector K is defined as constant,=⋅Kr  where
r is the radius vector drawn from the origin of the reference frame to any point in the
plane; see Fig. 1.1.)  Surfaces of constant phase propagate in the direction of Rk  with
the phase velocity .|| Rkω=v  The electromagnetic wave is called homogeneous
when Rk  and Ik are parallel (including the case Ik = 0); otherwise it is called inho-
mogeneous.  When ,IR kk  the complex wave vector can be written as =k

,ˆ)i( IR nkk +  where n̂  is a real unit vector in the direction of propagation and both Rk
and Ik  are real and non-negative.

The Maxwell equations for the plane wave take the form

,00 =⋅Ek  (1.36)
,00 =⋅ Hk  (1.37)

,00 HEk ωµ=×  (1.38)
.00 EHk ωε−=×  (1.39)

The first two equations indicate that the plane electromagnetic wave is transverse:
both 0E  and 0H  are perpendicular to k.   Furthermore, it is evident from Eq. (1.38)
or (1.39) that 0E  and 0H  are mutually perpendicular: .000 =⋅ HE   Since ,0E  ,0H
and k  are, in general, complex vectors, the physical interpretation of these facts can
be far from obvious.  It becomes most transparent when ,ε  ,µ  and k  are real.  The

KrKrKr
K

⋅=⋅=⋅ 321

:tonormalsurfacePlane

O

K

1r

2r

3r

Figure 1.1.  Plane surface normal to a real vector K.
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reader can verify that in this case the real field vectors E and H are mutually perpen-
dicular and lie in a plane normal to the direction of wave propagation.

Equations (1.32) and (1.38) yield ).,()(),( c
1

c tt rEkrH ×= −ωµ   Therefore, a
plane electromagnetic wave can always be considered in terms of only the electric (or
only the magnetic) field.

By taking the vector product of both sides of Eq. (1.38) with k and using Eq.
(1.39) and the vector identity

),()()( baccabcba ⋅−⋅=××  (1.40)

together with Eq. (1.36), we derive

.εµω 2kk =⋅  (1.41)

In the practically important case of a homogeneous plane wave, we obtain from Eq.
(1.41)

,i IR c
kkk mωεµω ==+=  (1.42)

where k is the wave number,

00

1
µε

=c  (1.43)

is the speed of light in a vacuum, and

εµ
µε

εµ c==+=
00

IR immm   (1.44)

is the complex refractive index with non-negative real part Rm  and non-negative
imaginary part .Im   Thus, the plane homogeneous wave has the form

.iˆi exp ˆ exp),( RI0c �
�

�
�
�

� −⋅�
�

�
�
�

� ⋅−= t
cc

t ωωω rnrnErE mm  (1.45)

If the imaginary part of the refractive index is non-zero, then it determines the decay
of the amplitude of the wave as it propagates through the medium, which is thus ab-
sorbing.  The real part of the refractive index determines the phase velocity of the
wave: .Rmc=v   For a vacuum, 1R == mm  and .c=v

As follows from Eqs. (1.28), (1.32), (1.38), and (1.40), the time-averaged
Poynting vector of a plane wave is

 )]()(Re[)( 2
1 rHrErS ∗×=��

  . 
2

)]()[()]()([Re
�
�
�

�
�
� ⋅−⋅= ∗

∗∗∗∗

ωµ
rEkrErErEk  (1.46)

If the wave is homogeneous, then 0=⋅Ek  and so ,0=⋅∗ Ek  and
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.ˆˆ2 exp||Re)( I
2

02
1 nrnErS �

�

�
�
�

� ⋅−
��

�
	



��

�
�


=�� m
c
ω

µ
ε  (1.47)

Thus, �� )(rS  is in the direction of propagation and its absolute value |,)(|)( ��= rSrI
usually called the intensity (or irradiance), is exponentially attenuated provided that
the medium is absorbing:

,e)( ˆ
0

rnr ⋅−= αII  (1.48)

where 0I  is the intensity at r = 0.  The absorption coefficient α  is

,42 I
I λ

πωα m
m ==

c
 (1.49)

where

ω
πλ c2=  (1.50)

is the free-space wavelength.  The intensity has the dimension of monochromatic en-
ergy flux: [energy/(area× time)].

The reader can verify that the choice of the time dependence )iexp( tω  rather than
)iexp( tω−  in the complex representation of time-harmonic fields in Eq. (1.16) would

have led to IR immm −=  with a non-negative .Im   The )iexp( tω−  time-factor con-
vention adopted here has been used in many other books on optics and light scattering
(e.g., Born and Wolf 1999; Bohren and Huffman 1983; Barber and Hill 1990) and is a
nearly standard choice in electromagnetics (e.g., Stratton 1941; Tsang et al. 1985;
Kong 1990; Jackson 1998) and solid-state physics.  However, van de Hulst (1957)
and Kerker (1969) used the time factor ),iexp( tω  which implies a non-positive
imaginary part of the complex refractive index.  It does not matter in the final analysis
which convention is chosen because all measurable quantities of practical interest are
always real.  However, it is important to remember that once a choice of the time
factor has been made, its consistent use throughout all derivations is essential.

1.3 Coherency matrix and Stokes parameters

Most photometric and polarimetric optical instruments cannot measure the electric
and magnetic fields associated with a beam of light; rather, they measure quantities
that are time averages of real-valued linear combinations of products of field vector
components and have the dimension of intensity. Important examples of such observ-
able quantities are so-called Stokes parameters. In order to define them, we will use
the spherical coordinate system associated with a local right-handed Cartesian coordi-
nate system having its origin at the observation point, as shown in Fig. 1.2.  The di-
rection of propagation of a plane electromagnetic wave in a homogeneous nonab-
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sorbing medium is specified by a unit vector n̂  or, equivalently, by a couplet ),,( ϕϑ
where ] ,0[ πϑ ∈  is the polar (zenith) angle measured from the positive z-axis and

)2 ,0[ πϕ ∈  is the azimuth angle measured from the positive x-axis in the clockwise
direction when looking in the direction of the positive z-axis. Since the medium is
assumed to be nonabsorbing, the component of the electric field vector along the di-
rection of propagation n̂  is equal to zero, so that the electric field at the observation
point is given by ,ϕϑ EEE += where ϑE  and ϕE  are the -ϑ  and -ϕ components of

the electric field vector. The component ϑ̂ϑϑ E=E  lies in the meridional plane (i.e.,
plane through n̂  and the z-axis), whereas the component ϕ̂ϕϕ E=E  is perpendicular

to this plane; ϑ̂  and ϕ̂  are the corresponding unit vectors such that .ˆˆˆ ϕϑ ×=n  Note
that in the microwave remote sensing literature, ϑE  and ϕE  are often denoted as vE
and hE  and called the vertical and horizontal electric field vector components, re-
spectively (e.g., Tsang et al. 1985; Ulaby and Elachi 1990).

The specification of a unit vector n̂  uniquely determines the meridional plane of
the propagation direction except when n̂  is oriented along the positive or negative
direction of the z-axis. Although it may seem redundant to specify ϕ  in addition to ϑ
when ,or    0 πϑ =  the unit ϑ  and ϕ  vectors and, thus, the electric field vector com-
ponents ϑE  and ϕE  still depend on the orientation of the meridional plane. There-
fore, we will always assume that the specification of n̂  implicitly includes the speci-
fication of the appropriate meridional plane in cases when n̂  is parallel to the z-axis.
To minimize confusion, we often will specify explicitly the direction of propagation
using the angles ϑ  and ;ϕ  the latter uniquely defines the meridional plane when

0=ϑ  or .π
Consider a plane electromagnetic wave propagating in a medium with constant

real ,ε  ,µ  and k and given by

ϕ

x

yO

z

ϑ

ϑ̂

ϕ̂

n̂=ϑ̂×ϕ̂

Figure 1.2.  Coordinate system used to describe the direction of propagation and the
polarization state of a plane electromagnetic wave.
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).iˆiexp(),( 0c tkt ω−⋅= rnErE  (1.51)

The simplest complete set of linearly independent quadratic combinations of the
electric field vector components with non-zero time averages consists of the follow-
ing four quantities:

,00cc
∗∗ = ϑϑϑϑ EEEE   ,00cc

∗∗ = ϕϑϕϑ EEEE   ,00cc
∗∗ = ϑϕϑϕ EEEE   .00cc

∗∗ = ϕϕϕϕ EEEE

The products of these quantities and µε2
1  have the dimension of monochromatic

energy flux and form the 22×  so-called coherency (or density) matrix :ρ

. 
2
1

0000

0000

2221

1211

�
�
�

�

�
�
�

�
=�

�

�
�
�

�
=

∗∗

∗∗

ϕϕϑϕ

ϕϑϑϑ

µ
ε

ρρ
ρρ

EEEE
EEEE

ρ  (1.52)

The completeness of the set of the four coherency matrix elements means that any
plane-wave characteristic directly observable with a traditional optical instrument is a
real-valued linear combination of these quantities.

Since 12ρ  and 21ρ  are, in general, complex, it is convenient to introduce an alter-
native complete set of four real, linearly independent quantities called Stokes pa-
rameters.  Let us first group the elements of the 22×  coherency matrix into a 14×
coherency column vector (O’Neill 1992):

. 
2
1

00

00

00

00

22

21

12

11

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

∗

∗

∗

∗

ϕϕ

ϑϕ

ϕϑ

ϑϑ

µ
ε

ρ
ρ
ρ
ρ

EE
EE
EE
EE

J  (1.53)

The Stokes parameters I, Q, U, and V are then defined as the elements of a 14×  col-
umn vector ,I  otherwise known as the Stokes column vector, as follows:

,

)2Im(
   )Re(2
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1  

)(i
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00
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∗

∗
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∗∗
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ϕϑ

ϕϑ

ϕϕϑϑ

ϕϕϑϑ

ϕϑϑϕ

ϑϕϕϑ

ϕϕϑϑ

ϕϕϑϑ

µ
ε

µ
ε

EE
EE
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EEEE
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V
U
Q
I

DJI

 (1.54)
where

.

0ii0
0110
1001

1001

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−−

−
=D  (1.55)

The converse relationship is

,1IDJ −=  (1.56)
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where the inverse matrix 1−D  is given by

.

0011
i100

i100
0011

 
2
11

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−−

−
=−D  (1.57)

Since the Stokes parameters are real-valued and have the dimension of mono-
chromatic energy flux, they can be measured directly with suitable optical instru-
ments. Furthermore, they form a complete set of quantities needed to characterize a
plane electromagnetic wave, inasmuch as it is subject to practical analysis.  This
means that (i) any other observable quantity is a linear combination of the four Stokes
parameters, and (ii) it is impossible to distinguish between two plane waves with the
same values of the Stokes parameters using a traditional optical device (the so-called
principle of optical equivalence). Indeed, the two complex amplitudes

)iexp(0 ϑϑϑ ∆aE =  and )iexp(0 ϕϕϕ ∆aE =  are characterized by four real numbers:
the non-negative amplitudes ϑa  and ϕa  and the phases ϑ∆  and .∆∆∆ ϑϕ −=  The
Stokes parameters carry information about the amplitudes and the phase difference

,∆  but not about .ϑ∆  The latter is the only quantity that could be used to distinguish
different waves with the same ,ϑa ,ϕa  and ∆  (and thus the same Stokes parameters),
but it vanishes when a field vector component is multiplied by the complex conjugate
value of the same or another field vector component; cf. Eqs. (1.52) and (1.54).

The first Stokes parameter, I, is the intensity introduced in the previous section;
the explicit definition given in Eq. (1.54) is applicable to a homogeneous, nonab-
sorbing medium.  The Stokes parameters Q, U, and V describe the polarization state
of the wave.  The ellipsometric interpretation of the Stokes parameters will be the
subject of the following section.  The reader can easily verify that the Stokes pa-
rameters of a plane monochromatic wave are not completely independent but rather
are related by the quadratic identity

.2222 VUQI ++≡  (1.58)

We will see later, however, that this identity may not hold for a quasi-monochromatic
beam of light.  Because one usually must deal with relative rather than absolute inten-
sities, the constant factor µε2

1  is often unimportant and will be omitted in all

cases where this does not generate confusion.
 The coherency matrix and the Stokes column vector are not the only representa-

tions of polarization and not always the most convenient ones.  Two other frequently
used representations are the real so-called modified Stokes column vector given by
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and the complex circular-polarization column vector defined as

,
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where

,
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=B  (1.61)

.

0i10
1001

1001
0i10

 
2
1

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−

=A  (1.62)

It is easy to verify that
MS1IBI −=  (1.63)

and
,CP1IAI −=  (1.64)
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1.4 Ellipsometric interpretation of Stokes parameters

In this section we show how the Stokes parameters can be used to derive the ellip-
sometric characteristics of the plane electromagnetic wave given by Eq. (1.51).
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Writing

),iexp(0 ϑϑϑ ∆aE =  (1.67)
)iexp(0 ϕϕϕ ∆aE =  (1.68)

with real non-negative amplitudes ϑa  and ϕa  and real phases ϑ∆  and ,ϕ∆  using Eq.

(1.54), and omitting the factor µε2
1  we obtain for the Stokes parameters

,22
ϕϑ aaI +=  (1.69)

,22
ϕϑ aaQ −=  (1.70)

,cos2 ∆ϕϑ aaU −=  (1.71)

,sin2 ∆ϕϑ aaV =  (1.72)

where

.ϕϑ ∆∆∆ −=  (1.73)

Substituting Eqs. (1.67) and (1.68) in Eq. (1.51), we have for the real electric
vector

),cos(),( tatE ωδϑϑϑ −=r  (1.74)
),cos(),( tatE ωδϕϕϕ −=r  (1.75)

where

.ˆ       ,ˆ rnrn ⋅+=⋅+= kk ϕϕϑϑ ∆δ∆δ  (1.76)

At any fixed point O in space, the endpoint of the real electric vector given by Eqs.
(1.74)–(1.76) describes an ellipse with specific major and minor axes and orientation
(see the top panel of Fig. 1.3).  The major axis of the ellipse makes an angle ζ  with
the positive direction of the -ϕ axis such that ).,0[ πζ ∈   By definition, this orienta-
tion angle is obtained by rotating the -ϕ axis in the clockwise direction when looking
in the direction of propagation, until it is directed along the major axis of the ellipse.
The ellipticity is defined as the ratio of the minor to the major axes of the ellipse and
is usually expressed as |,tan| β  where ].4,4[ ππβ −∈   By definition, β  is positive
when the real electric vector at O rotates clockwise, as viewed by an observer looking
in the direction of propagation.  The polarization for positive β  is called right-
handed, as opposed to the left-handed polarization corresponding to the anti-
clockwise rotation of the electric vector.

To express the orientation ζ  of the ellipse and the ellipticity |tan| β  in terms of
the Stokes parameters, we first write the equations representing the rotation of the real
electric vector at O in the form

),sin(sin),( tatEq ωδβ −=r  (1.77)
),cos(cos),( tatE p ωδβ −=r  (1.78)
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where pE  and qE  are the electric field components along the major and minor axes
of the ellipse, respectively (Fig. 1.3).  One easily verifies that a positive (negative) β

(a) Polarization ellipse

(b) Elliptical polarization (V ≠ 0)

(c) Linear polarization (V = 0)

(d) Circular polarization (Q = U = 0)

Q < 0 U = 0 V < 0 Q > 0 U = 0 V > 0 Q = 0 U > 0 V < 0 Q = 0 U < 0 V > 0

Q = –I U = 0 Q = I U = 0 Q = 0 U = = 0 U = –I

V = – = I

q

p

ϕ

ζβ

I Q

I V

ϑ

Figure 1.3.  Ellipse described by the tip of the real electric vector at a fixed point O in space
(upper panel) and particular cases of elliptical, linear, and circular polarization. The plane
electromagnetic wave propagates in the direction ϕϑ ˆˆ ×  (i.e., towards the reader).
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indeed corresponds to the right-handed (left-handed) polarization.  The connection
between Eqs. (1.74)–(1.75) and Eqs. (1.77)–(1.78) can be established by using the
simple transformation rule for rotation of a two-dimensional coordinate system:

,sin),(cos),(),( ζζϑ tEtEtE pq rrr +−=  (1.79)

.cos),(sin),(),( ζζϕ tEtEtE pq rrr −−=  (1.80)

By equating the coefficients of tωcos  and tωsin  in the expanded Eqs. (1.74) and
(1.79) and those in the expanded Eqs. (1.75) and (1.80), we obtain

,sincoscoscossinsincos ζδβζδβδϑϑ aaa +−=  (1.81)

,sinsincoscoscossinsin ζδβζδβδϑϑ aaa +=  (1.82)

,coscoscossinsinsincos ζδβζδβδϕϕ aaa −−=  (1.83)

.cossincossincossinsin ζδβζδβδϕϕ aaa −=  (1.84)

Squaring and adding Eqs. (1.81) and (1.82) and Eqs. (1.83) and (1.84) gives

),sincoscos(sin 222222 ζβζβϑ += aa  (1.85)

).coscossin(sin 222222 ζβζβϕ += aa  (1.86)

Multiplying Eqs. (1.81) and (1.83) and Eqs. (1.82) and (1.84) and adding yields

.2sin2cos cos 2
2
1 ζβ∆ϕϑ aaa −=  (1.87)

Similarly, multiplying Eqs. (1.82) and (1.83) and Eqs. (1.81) and (1.84) and subtract-
ing gives

.2sin sin 2
2
1 β∆ϕϑ aaa −=  (1.88)

Comparing Eqs. (1.69)–(1.72) with Eqs. (1.85)–(1.88), we finally derive

,2aI =  (1.89)

,2cos2cos ζβIQ −=  (1.90)

,2sin2cos ζβIU =  (1.91)

.2sin βIV −=  (1.92)

The parameters of the polarization ellipse are thus expressed in terms of the
Stokes parameters as follows.  The major and minor axes are given by βcosI  and

|,sin| βI  respectively (cf. Eqs. (1.77) and (1.78)). Equations (1.90) and (1.91) yield

. 2tan
Q
U−=ζ  (1.93)

Because ,4|| πβ ≤  we have 02cos ≥β  so that ζ2cos  has the same sign as –Q.
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Therefore, from the different values of ζ  that satisfy Eq. (1.93) but differ by ,2π
we must choose the one that makes the sign of ζ2cos  the same as that of –Q.  The
ellipticity and handedness follow from

. 2tan
22 UQ

V

+
−=β  (1.94)

Thus, the polarization is left-handed if V is positive and right-handed if V is negative
(Fig. 1.3).

The electromagnetic wave becomes linearly polarized when ;0=β  then the elec-
tric vector vibrates along a line making an angle ζ  with the -ϕ axis (cf. Fig. 1.3) and
V = 0. Furthermore, if 0=ζ  or 2πζ =  then U vanishes as well.  This explains the
usefulness of the modified Stokes representation of polarization given by Eq. (1.59) in
situations involving linearly polarized light, as follows. The modified Stokes vector
then has only one non-zero element and is equal to T]0 0 0 [I  if 2πζ =  (the elec-
tric vector vibrates along the -ϑ axis, i.e., in the meridional plane) or to T]0  0    0[ I  if

0=ζ  (the electric vector vibrates along the -ϕ axis, i.e., in the plane perpendicular
to the meridional plane), where T indicates the transpose of a matrix.

If, however, ,4πβ ±=  then both Q and U vanish, and the electric vector de-
scribes a circle either in the clockwise direction ) ,4( IV −== πβ  or the anti-
clockwise direction ), ,4( IV =−= πβ  as viewed by an observer looking in the di-
rection of propagation (Fig. 1.3).  In this case the electromagnetic wave is circularly
polarized; the circular-polarization vector CPI  has only one non-zero element and
takes the values T]0    0  0[ I  and ,]0 0  0[ TI  respectively (see Eq. (1.60)).

The polarization ellipse, along with a designation of the rotation direction (right-
or left-handed), fully describes the temporal evolution of the real electric vector at a
fixed point in space.  This evolution can also be visualized by plotting the curve, in

) , ,( tϕϑ  coordinates, described by the tip of the electric vector as a function of time.
For example, in the case of an elliptically polarized plane wave with right-handed
polarization the curve is a right-handed helix with an elliptical projection onto the

-ϑϕ plane centered around the t-axis (Fig. 1.4(a)).  The pitch of the helix is simply
,2 ωπ  where ω  is the angular frequency of the wave.  Another way to visualize a

plane wave is to fix a moment in time and draw a three-dimensional curve in
) , ,( sϕϑ  coordinates described by the tip of the electric vector as a function of a spa-

tial coordinate nr ˆ⋅=s  oriented along the direction of propagation .n̂   According to
Eqs. (1.74)–(1.76), the electric field is the same for all position–time combinations
with constant .tks ω−   Therefore, at any instant of time (say, t = 0) the locus of the
points described by the tip of the electric vector originating at different points on the
s-axis is also a helix, with the same projection onto the -ϑϕ plane as the respective
helix in the ) ,,( tϕϑ  coordinates but with opposite handedness.  For example, for the
wave with right-handed elliptical polarization shown in Fig. 1.4(a), the respective
curve in the ) , ,( sϕϑ  coordinates is a left-handed elliptical helix, shown in Fig.
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1.4(b).  The pitch of this helix is the wavelength .λ   It is now clear that the propaga-
tion of the wave in time and space can be represented by progressive movement in
time of the helix shown in Fig. 1.4(b) in the direction of n̂  with the speed of light.
With increasing time, the intersection of the helix with any plane s = constant de-
scribes a right-handed vibration ellipse.  In the case of a circularly polarized wave, the
elliptical helix becomes a helix with a circular projection onto the -ϑϕ plane.  If the
wave is linearly polarized, then the helix degenerates into a simple sinusoidal curve in
the plane making an angle ζ  with the -ϕ axis (Fig. 1.4(c)).

1.5 Rotation transformation rule for Stokes parameters

The Stokes parameters of a plane electromagnetic wave are always defined with re-
spect to a reference plane containing the direction of wave propagation.  If the refer-
ence plane is rotated about the direction of propagation then the Stokes parameters are
modified according to a rotation transformation rule, which can be derived as follows.
Consider a rotation of the coordinate axes ϑ  and ϕ  through an angle πη 20 <≤  in

(a)

(b)

(c)

t

s

s

 

 

  

n̂

n̂ ζ

ϕ

ϕ

ϕ

ϑ

ϑ

ϑ

Figure 1.4.  (a) The helix described by the tip of the real electric vector of a plane electromag-
netic wave with right-handed polarization in ),,( tϕϑ  coordinates at a fixed point in space.  (b)
As in (a), but in ),,( sϕϑ  coordinates at a fixed moment in time.  (c) As in (b), but for a line-
arly polarized wave.
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the clockwise direction when looking in the direction of propagation (Fig. 1.5).  The
transformation rule for rotation of a two-dimensional coordinate system yields

,sincos 000 ηη ϕϑϑ EEE +=′  (1.95)
,cossin 000 ηη ϕϑϕ EEE +−=′  (1.96)

where the primes denote the electric field vector components with respect to the new
reference frame.  It then follows from Eq. (1.54) that the rotation transformation rule
for the Stokes parameters is

, 
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where )(ηL  is called the Stokes rotation matrix for angle .η   It is obvious that a
πη =  rotation does not change the Stokes parameters.

Because

,)()()( MS1MS IBBLIBLIBI −==′=′ ηη   (1.98)

the rotation matrix for the modified Stokes column vector is given by

.

1000
02cos2sin2sin
02sincossin
02sinsincos

)()( 2
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1MS
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ηηη
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ηηη

ηη BBLL  (1.99)

Similarly, for the circular polarization representation,

,)()()( CP1CP IAALIALIAI −==′=′ ηη      (1.100)

and the corresponding rotation matrix is diagonal (Hovenier and van der Mee 1983):

′

′

η

n̂

O
η

ϕ̂

ϕ̂

ϑ̂ϑ̂

Figure 1.5.  Rotation of the -ϑ  and -ϕ axes through an angle 0≥η  around n̂  in the clock-
wise direction when looking in the direction of propagation.
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1.6 Quasi-monochromatic light and incoherent addition
of Stokes parameters

The definition of a monochromatic plane electromagnetic wave given by Eqs. (1.51)
and (1.67)–(1.68) implies that the complex amplitude 0E  and, therefore, the quanti-
ties ,ϑa  ,ϕa  ,ϑ∆  and ϕ∆  are constant.  In reality, these quantities often fluctuate in
time.  Although the typical frequency of these fluctuations is much smaller than the
angular frequency ,ω  it is still so high that most optical devices are incapable of
tracing the instantaneous values of the Stokes parameters but rather measure averages
of the Stokes parameters over a relatively long period of time.  Therefore, we must
modify the definition of the Stokes parameters for such quasi-monochromatic beam
of light as follows:

,22
0000 ��+��=��+��= ∗∗

ϕϑϕϕϑϑ aaEEEEI      (1.102)

,22
0000 ��−��=��−��= ∗∗

ϕϑϕϕϑϑ aaEEEEQ      (1.103)

,cos20000 ��−=��−�−�= ∗∗ ∆ϕϑϑϕϕϑ aaEEEEU      (1.104)

,sin2ii 0000 ��=��−��= ∗∗ ∆ϕϑϕϑϑϕ aaEEEEV      (1.105)

where we have omitted the common factor µε2
1  and

)(d1   

  
tft

T
f

Tt

t

′′=��

+

     (1.106)

denotes the average over a time interval T long compared with the typical period of
fluctuation.

The identity (1.58) is not valid, in general, for a quasi-monochromatic beam. In-
deed, now we have

  2222 VUQI −−−
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thereby yielding

.2222 VUQI ++≥      (1.107)

The equality holds only if the ratio )()( tata ϕϑ  of the real amplitudes and the phase
difference )(t∆  are independent of time, which means that )(0 tE ϑ  and )(0 tE ϕ  are
completely correlated.  In this case the beam is said to be fully (or completely) polar-
ized.  This definition includes a monochromatic wave, but is, of course, more general.
However, if ),(taϑ  ),(taϕ  ),(tϑ∆  and )(tϕ∆  are totally uncorrelated and =�� 2

ϑa
,2 �� ϕa  then Q = U = V = 0, and the quasi-monochromatic beam of light is said to be

unpolarized (or natural). This means that the parameters of the vibration ellipse traced
by the endpoint of the electric vector fluctuate in such a way that there is no preferred
vibration ellipse.

When two or more quasi-monochromatic beams propagating in the same direction
are mixed incoherently (i.e., there is no permanent phase relationship between the
separate beams), the Stokes vector of the mixture is equal to the sum of the Stokes
vectors of the individual beams:

,n

n

II =      (1.108)

where n numbers the beams.  Indeed, inserting Eqs. (1.67) and (1.68) in Eq. (1.54),
we obtain for the total intensity

�−+−�= )](iexp[)](iexp[ mnmnmnmn

mn

aaaaI ϕϕϕϕϑϑϑϑ ∆∆∆∆

   .)](iexp[)](iexp[ �−+−�+=
≠

mnmnmnmn

nmn

n

n

aaaaI ϕϕϕϕϑϑϑϑ ∆∆∆∆    (1.109)

Since the phases of different beams are uncorrelated, the second term on the right-
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hand side of the relation above vanishes.  Hence

,n

n

II =      (1.110)

and similarly for Q, U, and V.  Of course, this additivity rule also applies to the coher-
ency matrix ,ρ  the modified Stokes vector ,MSI  and the circular-polarization vector

.CPI   An important example demonstrating the application of Eq. (1.108) is the scat-
tering of light by a small volume element containing randomly positioned particles.
The phases of the individual waves scattered by the particles depend on the positions
of the particles.  Therefore, if the distribution of the particles is sufficiently random
then the individual scattered waves will be incoherent and the Stokes vectors of the
individual waves will add.  The additivity of the Stokes parameters allows us to gen-
eralize the principle of optical equivalence (Section 1.3) to quasi-monochromatic light
as follows: it is impossible by means of a traditional optical instrument to distinguish
between various incoherent mixtures of quasi-monochromatic beams that form a
beam with the same Stokes parameters ).,,,( VUQI   For example, there is only one
kind of unpolarized light, although it can be composed of quasi-monochromatic
beams in an infinite variety of optically indistinguishable ways.

In view of the general inequality (1.107), it is always possible mathematically to
decompose any quasi-monochromatic beam into two parts, one unpolarized, with a
Stokes vector

,0]   0   0   [ T222 VUQI ++−

and one fully polarized, with a Stokes vector

.]         [ T222 VUQVUQ ++

Thus, the intensity of the fully polarized component is ,222 VUQ ++  so that the
degree of (elliptical) polarization of the quasi-monochromatic beam is

.
222

I
VUQ

P
++

=      (1.111)

We further define the degree of linear polarization as

I
UQ

P
22

L
+

=      (1.112)

and the degree of circular polarization as

.C I
VP =      (1.113)

P vanishes for unpolarized light and is equal to unity for fully polarized light.  For a
partially polarized beam )10( << P  with ,0≠V  the sign of V indicates the preferen-
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tial handedness of the vibration ellipses described by the endpoint of the electric vec-
tor: a positive V indicates left-handed polarization and a negative V indicates right-
handed polarization.  By analogy with Eqs. (1.93) and (1.94), the quantities QU−

and 22|| UQV +  may be interpreted as specifying the preferential orientation and

ellipticity of the vibration ellipse.  Unlike the Stokes parameters, these quantities are
not additive.  In view of the rotation transformation rule (1.97), P, ,LP  and CP  are
invariant with respect to rotations of the reference frame around the direction of
propagation.  When U = 0, the ratio

I
QPQ  −=      (1.114)

is also called the degree of linear polarization (or the signed degree of linear polariza-
tion). QP  is positive when the vibrations of the electric vector in the -ϕ direction
(i.e., the direction perpendicular to the meridional plane of the beam) dominate those
in the -ϑ direction and is negative otherwise.  The standard polarimetric analysis of a
general quasi-monochromatic beam with Stokes parameters I, Q, U, and V is summa-
rized in Fig. 1.6 (after Hovenier et al. 2004).
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   Figure 1.6.  Analysis of a quasi-monochromatic beam with Stokes parameters I, Q, U, and V.
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Further reading

Excellent treatments of classical electrodynamics and optics are provided by Stratton
(1941), Kong (1990), Jackson (1998), and Born and Wolf (1999).  The optical prop-
erties of bulk matter and their measurement are discussed in Chapters 9 and 10 of
Bohren and Huffman (1983) as well as in the comprehensive handbook edited by
Palik and Ghosh (1997).  Several books are entirely devoted to polarization, for ex-
ample Shurcliff (1962), Clarke and Grainger (1971), Azzam and Bashara (1977), Kli-
ger et al. (1990), Collett (1992), and Brosseau (1998).  In Pye (2001), numerous
manifestations of polarization in science and nature are discussed.



31

Chapter 2

Scattering, absorption, and emission
of electromagnetic radiation by
an arbitrary finite particle

The presence of an object with a refractive index different from that of the surround-
ing medium changes the electromagnetic field that would otherwise exist in an un-
bounded homogeneous space.  The difference of the total field in the presence of the
object and the original field that would exist in the absence of the object can be
thought of as the field scattered by the object.  In other words, the total field is equal
to the vector sum of the incident (original) field and the scattered field.

The angular distribution and polarization of the scattered field depend on the po-
larization and directional characteristics of the incident field as well as on such prop-
erties of the scatterer as its size relative to the wavelength and its shape, composition,
and orientation.  Therefore, in practice one usually must solve the scattering problem
anew every time some or all of these input parameters change.  It is appropriate, how-
ever, to consider first the general mathematical description of the scattering process
without making any detailed assumptions about the scattering object except that it is
composed of a linear and isotropic material.  Hence the goal of this chapter is to es-
tablish a basic theoretical framework underlying more specific problems discussed in
the following chapters.

2.1 Volume integral equation

Consider a finite scattering object in the form of a single body or a fixed aggregate
embedded in an infinite, homogeneous, linear, isotropic, and nonabsorbing medium
(Fig. 2.1(a)).  Mathematically, this is equivalent to dividing all space into two mutu-
ally disjoint regions, the finite interior region INTV  occupied by the scattering object
and the infinite exterior region .EXTV  The region INTV  is filled with an isotropic, lin-
ear, and possibly inhomogeneous material.
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It is well known that optical properties of bulk substances in solid or liquid phase
are qualitatively different from those of their constituent atoms and molecules when
the latter are isolated.  This may cause a problem when one applies the concept of
bulk optical constants to a very small particle because either the optical constants de-
termined for bulk matter provide an inaccurate estimate or the particle is so small that
the entire concept of optical constants loses its validity.  We will therefore assume
that the individual bodies forming the scattering object are sufficiently large that they
can still be characterized by optical constants appropriate to bulk matter.  According
to Huffman (1988), this implies that each body is larger than approximately 50 Å.

The monochromatic Maxwell curl equations (1.18) and (1.20) describing the
scattering problem can be rewritten as follows:

,        
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where the subscripts 1 and 2 refer to the exterior and interior regions, respectively.
Since the first relations in Eqs. (2.1) and (2.2) yield the magnetic field provided that
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ϑ̂
incn̂ = incϑ̂ × incϕ̂

Figure 2.1.  Schematic representation of the electromagnetic scattering problem.  The
unshaded exterior region EXTV  is unbounded in all directions and the shaded areas collectively
constitute the interior region .INTV
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the electric field is known everywhere, we will look for the solution of Eqs. (2.1) and
(2.2) in terms of only the electric field.  Assuming that the host medium and the scat-
tering object are nonmagnetic, i.e., ,)( 012 µµµ =≡r  where 0µ  is the permeability of
a vacuum, we easily derive the following vector wave equations:

,              ,0)()( EXT
2
1 Vk ∈=−×∇×∇ rrErE    (2.3)

,              ,0)()()( INT
2
2 Vk ∈=−×∇×∇ rrErrE    (2.4)

where 011 µεω=k  and 022 )()( µεω rr =k  are the wave numbers of the exterior
and interior regions, respectively.  The permittivity for the interior region is regarded
as a function of r, to provide for the general case where the scattering object is inho-
mogeneous.  Equations (2.3) and (2.4) can be rewritten as the single inhomogeneous
differential equation
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and )(rm  is the refractive index of the interior relative to that of the exterior. The
forcing function )(rj  obviously vanishes everywhere outside the interior region.

Any solution of an inhomogeneous linear differential equation can be divided into
two parts: (i) a solution of the respective homogeneous equation with the right-hand
side identically equal to zero and (ii) a particular solution of the inhomogeneous
equation. Thus, the first part satisfies the equation

,              ,0)()( INTEXT
inc2

1
inc VVk ∪∈=−×∇×∇ rrErE     (2.7)

and describes the field that would exist in the absence of the scattering object, i.e., the
incident field.  The physically appropriate particular solution of Eq. (2.5) must give
the scattered field )(sca rE generated by the forcing function ).(rj   Obviously, of all
possible particular solutions of Eq. (2.5) we must choose the one that vanishes at large
distances from the scattering object and ensures energy conservation.

To find ),(sca rE  we first introduce the free space dyadic Green’s function

),( rr ′G
�

 as a dyadic (Cartesian tensor) satisfying the differential equation

),(δ),(),( 2
1 rrrrrr ′−=′−′×∇×∇ IGkG

���

   (2.8)

where I
�

 is the identity dyadic and )(δ)(δ)(δ)(δ zzyyxx ′−′−′−=′− rr  is the three-
dimensional Dirac delta function. Note that the result of a dyadic operating on a vec-
tor is another vector (see, e.g., Appendix 3 of Van Bladel 1964). This operation may
be thought of as a 33×  matrix representing the dyadic multiplying a column matrix
consisting of the initial vector components, thereby producing another column matrix
consisting of the resulting vector components. The components of both vectors must
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be specified in the same coordinate system. From a coordinate-free standpoint, a dy-
adic can be introduced as a sum of so-called dyads, each dyad being the result of a
dyadic product of two vectors ba ⊗  such that the operation cba ⋅⊗ )(  yields the
vector )( cba ⋅  and the operation )( bac ⊗⋅  yields the vector .)( bac ⋅  Any dyadic can
be represented as a sum of at most nine dyads. The vector product cba ×⊗ )(  is de-
fined as a dyad ),( cba ×⊗  and )( bac ⊗×  yields .)( bac ⊗×  The dot product of dy-
ads ba ⊗  and dc ⊗  yields the dyad ).)(( dacb ⊗⋅

Taking into account that

),()],([)](),([ rjrrrjrr ′⋅′×∇=′⋅′×∇ GG
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we get
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   (2.9)

We integrate both sides of this equation over the entire space to obtain
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Comparison with Eq. (2.5) now shows that
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where we have taken into account that )(rj  vanishes everywhere outside .INTV  We
will see in the following section that this particular solution of Eq. (2.5) indeed van-
ishes at infinity and ensures energy conservation and is therefore the physically ap-
propriate particular solution.  Hence, the complete solution of Eq. (2.5) is
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To find the free space dyadic Green’s function ),,( rr ′G
�

 we first express it in
terms of a scalar Green’s function ),( rr ′g  as follows:
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Inserting Eq. (2.13) into Eq. (2.8) and noticing that
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where 0
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 is a zero dyad, we obtain the following differential equation for g:
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The well-known solution of this equation representing so-called outgoing waves (i.e.,
satisfying the condition )0),(lim
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(e.g., Jackson 1998, p. 427).  Hence, Eqs. (2.6), (2.12), (2.13), and (2.15) finally yield
(Shifrin 1968; Saxon 1955b)
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.EXTINT VV ∪∈r  (2.16)

Equation (2.16) expresses the total electric field everywhere in space in terms of
the incident field and the total field inside the scattering object.  Since the latter is not
known in general, one must solve Eq. (2.16) either numerically or analytically.  As a
first step, the internal field can be approximated by the incident field.  This is the gist
of the so-called Rayleigh–Gans approximation otherwise known as the Rayleigh–De-
bye or Born approximation (van de Hulst 1957; Ishimaru 1997).  The total field com-
puted in the Rayleigh-Gans approximation can be substituted in the integral on the
right-hand side of Eq. (2.16) in order to compute an improved approximation, and this
iterative process can be continued until the total field converges within a given nu-
merical accuracy.  Although this procedure can be rather involved, it shows that in the
final analysis the total electric field can be expressed in terms of the incident field as
follows:
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where T
�

 is the so-called dyadic transition operator  (Tsang et al. 1985).  Substituting
Eq. (2.17) in Eq. (2.16), we derive the following integral equation for :T
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Equations of this type appear in the quantum theory of scattering and are called
Lippmann-Schwinger equations (Lippmann and Schwinger 1950; Newton 1966).

2.2 Scattering in the far-field zone

Let us now choose an arbitrary point O close to the geometrical center of the scatter-
ing object as the common origin of all position (radius) vectors (Figs. 2.1(a), (b)).
Usually one is interested in calculating the scattered field in the so-called far-field
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zone. Specifically, let us assume that rk1 � 1 and that r is much greater than any lin-
ear dimension of the scattering object r( � r′  for any ).INTV∈′r  Since
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where rrr =ˆ  is the unit vector in the direction of r (Fig. 2.1(b)), we have
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In deriving Eq. (2.20), we have taken into account that in spherical coordinates, de-
fined in Section 1.3, centered at the origin,
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where the order of operator components relative to the unit basis vectors is essential
because ,r̂ ,ϑ̂  and ϕ̂  depend on ϑ  and .ϕ  Hence,
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This important formula shows that the scattered field at a large distance from the
object behaves as an outgoing transverse spherical wave.  Specifically, since the
identity dyadic in the spherical coordinate system centered at the origin is given by

,ˆˆˆˆˆˆ ϕϕϑϑ ⊗+⊗+⊗= rrI
�

the factor ϕϕϑϑ ˆˆˆˆˆˆ ⊗+⊗=⊗− rrI
�

 ensures that the scattered wave in the far-field
zone is transverse, i.e., the electric field vector is always perpendicular to the direc-
tion of propagation :r̂

.0  )( ˆ sca =⋅ rEr   (2.23)

Hence, only the -ϑ  and -ϕ components of the electric vector of the scattered field
are non-zero.  Furthermore, the scattered field decays inversely with distance r from
the scattering object.  Equation (2.22) can be rewritten in the form
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=⋅= rErrErE
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where the vector )ˆ(sca
1 rE  is independent of r and describes the angular distribution of

the scattered radiation in the far-field zone.  Obviously, this solution also obeys the



2   Scattering, absorption, and emission by an arbitrary finite particle 37

energy conservation law by making the total energy flux across a spherical surface of
radius r independent of r.

Assuming that the incident field is a plane electromagnetic wave given by

)ˆiexp()( inc
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inc rnErE ⋅= k  (2.25)

and using Eq. (2.17), we derive for the far-field zone

,)ˆ,ˆ(e)ˆ( inc
0

incsca
i

scasca
1

EnnnE ⋅= A
r

r
rk
�

 (2.26)

where rn ˆˆ sca =  (Fig. 2.1(b)) and the scattering dyadic A
�

 is given by
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The elements of the scattering dyadic have the dimension of length.
Equation (2.17) shows that if )(inc

1 rE  and )(inc
2 rE  are two different incident fields

and )(sca
1 rE  and )(sca

2 rE are the corresponding scattered fields, then )(sca
1 rE + )(sca

2 rE
is the scattered field corresponding to the incident field )(inc

1 rE + ).(inc
2 rE  This result

is, of course, a consequence of the linearity of Maxwell’s equations (2.1) and (2.2)
and constitutive relations (1.8)–(1.10) and a manifestation of the well-known princi-
ple of superposition: if two electromagnetic fields satisfy the Maxwell equations, then
their sum also satisfies these equations.  Therefore, although the scattering dyadic A

�

describes the scattering of a plane electromagnetic wave, it can be used to compute
the scattering of any incident field as long as the latter can be expanded in elementary
plane waves.

It follows from Eqs. (2.23) and (2.27) that

.0)ˆ,ˆ(ˆ incscasca =⋅ nnn A
�

 (2.28)

However, because the incident field given by Eq. (2.25) is a transverse wave with
electric vector perpendicular to the direction of propagation, the dot product

incincsca ˆ)ˆ,ˆ( nnn ⋅A
�

 is not defined by Eq. (2.26).  To complete the definition, we take

this product to be zero:

,0ˆ)ˆ,ˆ( incincsca =⋅nnnA
�

 (2.29)

which means that one must retain only the part of the expression on the right-hand
side of Eq. (2.27) that is transverse to the incidence direction. As a consequence of
Eqs. (2.28) and (2.29), only four out of the nine components of the scattering dyadic
are independent.  It is therefore convenient to formulate the scattering problem in the
spherical coordinate system centered at the origin and to introduce the 22×  so-called
amplitude scattering matrix ,S  which describes the transformation of the -ϑ  and

-ϕ components of the incident plane wave into the -ϑ  and -ϕ components of the
scattered spherical wave:
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The amplitude scattering matrix depends on the directions of incidence and scattering
as well as on the size, morphology, composition, and orientation of the scattering ob-
ject with respect to the coordinate system.  As will be discussed in Section 2.11, it
also depends on the choice of origin of the coordinate system inside the scattering
object.  If known, the amplitude scattering matrix gives the scattered and thus the total
field, thereby providing a complete description of the scattering pattern in the far-field
zone.  The elements of the amplitude scattering matrix have the dimension of length
and are expressed in terms of the scattering dyadic as follows:
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,ˆˆ incsca
21 ϑϕ ⋅⋅= AS
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 (2.33)

.ˆˆ incsca
22 ϕϕ ⋅⋅= AS
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 (2.34)

We have pointed out in Section 1.3 that when a wave propagates along the z-axis,
the -ϑ  and -ϕ components of the electric field vector are determined by the specific
choice of meridional plane.  Therefore, the amplitude scattering matrix explicitly de-
pends on incϕ  and scaϕ  even when incϑ = 0 or π  and/or scaϑ = 0 or .π

2.3 Reciprocity

A fundamental property of the scattering dyadic is the reciprocity relation, which is a
manifestation of the symmetry of the scattering process with respect to an inversion
of time (Saxon 1955a).  To derive the reciprocity relation, we first consider the scat-
tering of a spherical incoming wave by an arbitrary finite object embedded in an infi-
nite, homogeneous, nonabsorbing medium.  In the far-field zone of the object, the
total electric field is the sum of the incoming and scattered spherical waves:
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where )ˆ(inc rE  and )ˆ(sca rE  are independent of r and

,0)ˆ(ˆ inc =⋅ rEr  (2.36)

.0)ˆ(ˆ sca =⋅ rEr  (2.37)

Equation (2.37) follows from Eq. (2.24), whereas Eq. (2.36) follows from the diver-
gence condition

0)( =⋅∇ rE  (2.38)
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(Eq. (1.17) with 1ε = constant) and the following relations:
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).()ˆ( 1inc −=⋅∇ rOrE  (2.42)

The latter is a consequence of Eq. (2.21) and the fact that )ˆ(inc rE  is independent of r.
Because of the linearity of the Maxwell equations and by analogy with Eq. (2.26),

the outgoing spherical wave must be linearly related to the incoming spherical wave.
Following Saxon (1955a), we express this relationship in terms of the so-called scat-
tering tensor S

�

 as follows:
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In view of Eq. (2.37), we have

.0)ˆ,ˆ(ˆ =′⋅ rrr S
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 (2.45)

Since )ˆ(inc rE  is transverse, the product rrr ′⋅′ ˆ)ˆ,ˆ(S
�

 remains undefined by Eq. (2.43).
Therefore, we will complete the definition of the scattering tensor by taking this
product to be zero:

.0ˆ)ˆ,ˆ( =′⋅′ rrrS
�

 (2.46)

As a consequence of Eqs. (2.45) and (2.46), S
�

 has only four independent compo-
nents.

The derivation of the reciprocity relation for the scattering tensor starts from the
fact that if 1E  and 2E  are any two solutions of the source-free Maxwell equations
(but with the same harmonic time dependence) then

.0)]}ˆ([)ˆ()]ˆ([)ˆ({ˆˆd 2112
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=×∇×−×∇×⋅
r

rrrrr rErErErErr
π
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Indeed, using Eqs. (1.26), (2.1), and (2.2), it can easily be established that
)( 2112 HEHE ×−×⋅∇  vanishes identically everywhere in space.  Integrating 2(E⋅∇

)211 HEH ×−× over all space and applying the Gauss theorem then yields Eq. (2.47).
We now take 1E  and 2E  at infinity to be superpositions of incoming and outgoing
spherical waves: 
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Taking into account Eq. (1.40), (2.36), (2.37), and (2.40) and the formulas
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cf. Eq. (2.21), we derive the following after some algebra:
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Using Eq. (2.43) to express the outgoing waves in terms of the incoming waves, we
then have
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Replacing r̂  by r′−ˆ  and r′ˆ  by r̂−  in the last term and transposing the tensor product
according to the identity
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we derive
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where T denotes the transposed tensor:
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Since inc
1E  and inc

2E  are arbitrary, we finally have

).ˆ,ˆ()ˆ,ˆ( T rrrr −′−=′ SS
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 (2.55)

This is the reciprocity condition for the scattering tensor.
It should be remarked that in deriving Eq. (2.47) we assumed, as almost every-

where else in this book, that the permeability, permittivity, and conductivity are sca-
lars. However, it is easily checked that Eq. (2.47) and thus the reciprocity condition
(2.55) remain valid even when the permeability, permittivity, and conductivity of the
scattering object are tensors, provided that all these tensors are symmetric.  If any of
these tensors is not symmetric, then Eq. (2.55) may become invalid (Dolginov et al.
1995; Lacoste and van Tiggelen 1999).

We now use Eq. (2.55) to derive the reciprocity relation for the scattering dyadic
A
�

 by considering the case in which the scattering object is illuminated by a plane
wave incident along the direction .ˆ incn   As follows from Eqs. (2.24) and (2.25), the
total electric field in the far-field zone is given by
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Representing the incident plane wave as a superposition of incoming and outgoing
spherical waves,
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(see Appendix A), where
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is the solid-angle Dirac delta function, we derive
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Considering this a special form of Eq. (2.35) and recalling the definition of the scat-
tering tensor, Eq. (2.43), we have
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It now follows from the definition of the scattering dyadic, Eqs. (2.26), (2.28), and
(2.29), that
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Finally, from Eqs. (2.55) and (2.61) we derive the reciprocity relation for the scatter-
ing dyadic:
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The reciprocity relation for the amplitude scattering matrix follows from Eqs.
(2.31)–(2.34) and (2.62) and the unit vector identities
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Simple algebra gives
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An interesting consequence of reciprocity is the so-called backscattering theorem,
which directly follows from Eq. (2.64) after substituting nn ˆˆ inc =  and :ˆˆ sca nn −=
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)ˆ,ˆ()ˆ,ˆ( 1221 nnnn −−=− SS  (2.65)

(van de Hulst 1957, Section 5.32).
Because of the universal nature of reciprocity, Eqs. (2.62), (2.64), and (2.65) are

important tests in computations or measurements of light scattering by small particles;
violation of reciprocity means that the computations or measurements are incorrect or
inaccurate. Alternatively, the use of reciprocity can substantially shorten the required
computer time or reduce the measurement effort because one may calculate or meas-
ure light scattering for only half of the scattering geometries and then use Eqs. (2.62)
and (2.64) for the reciprocal geometries.  Reciprocity plays a fundamental role in the
phenomenon of coherent backscattering of light from discrete random media dis-
cussed in Section 3.4 (e.g., Mishchenko 1992b; van Tiggelen and Maynard 1997).

2.4 Reference frames and particle orientation

It is often convenient to specify the orientation of the scattering object using the same
fixed reference frame that is used to specify the directions and states of polarization of
the incident and scattered waves.  In what follows, we will refer to this reference
frame as the laboratory coordinate system and denote it by L.  Although the spatial
orientation of the laboratory coordinate system is, in principle, arbitrary, it can often
be chosen in such a way that it most adequately represents the geometry of the scat-
tering medium or the physical mechanism of particle orientation.  In order to describe
the orientation of the scattering object with respect to the laboratory reference frame,
we introduce a right-handed coordinate system P affixed to the particle and having the
same origin inside the particle as L.  This coordinate system will be called the particle
reference frame.  The orientation of the particle with respect to L is specified by three
Euler angles of rotation, ,α ,β and ,γ  which transform the laboratory coordinate system
L{x, y, z} into the particle coordinate system ,},,{ zyxP ′′′  as shown in Fig. 2.2.  The
three consecutive Euler rotations are performed as follows:

● rotation of the laboratory coordinate system about the z-axis through an angle
),2,0[ πα ∈  reorienting the y-axis in such a way that it coincides with the line of

nodes (i.e., the line formed by the intersection of the xy- and -yx ′′ planes);
● rotation about the new y-axis through an angle ];,0[ πβ ∈
● rotation about the -z′ axis through an angle ).2,0[ πγ ∈

An angle of rotation is positive if the rotation is performed in the clockwise direction
when one is looking in the positive direction of the rotation axis.

As we will see in Chapters 5 and 6, most of the available analytical and numerical
techniques assume that (or become especially efficient when) the scattering problem
is solved in the particle reference frame with coordinate axes directed along the axes
of particle symmetry.  This implies that the incidence and scattering directions and
polarization reference planes must also be specified with respect to the particle refer-
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ence frame.  Therefore, in order to solve the scattering problem with respect to the
laboratory reference frame, one must first determine the illumination and scattering
directions with respect to the particle reference frame for a given orientation of the
particle relative to the laboratory reference frame, then solve the scattering problem in
the particle reference frame, and finally perform the backward transition to the labo-
ratory reference frame.  In this section we derive general formulas describing this
procedure (Mishchenko 2000).

Consider a monochromatic plane electromagnetic wave with electric field vector

)ˆiexp()ˆˆ()( inc
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incinc
0

incinc
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inc rnrE ⋅+= kEE LLLL ϕϑ ϕϑ  (2.66)

incident upon a nonspherical particle in a direction ,ˆ incn where r is the position (ra-
dius) vector connecting the origin of the laboratory coordinate system and the obser-
vation point and the index L labels unit vectors and electric field vector components
computed in the laboratory reference frame. In the far-field region, the scattered field
vector components are given by
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where LS  is the 22×  amplitude scattering matrix in the laboratory reference frame.
The amplitude scattering matrix depends on the directions of incidence and scattering
as well as on the orientation of the scattering particle with respect to the laboratory
reference frame as specified by the Euler angles of rotation ,α ,β  and .γ

Assume now that one of the available analytical or numerical techniques can be
efficiently used to find the amplitude scattering matrix with respect to the particle

Line of nodes
y

x′

y′

z′

α
βγ

z

x
β

Figure 2.2.  Euler angles of rotation ,α  ,β  and γ  transforming the laboratory coordinate
system L{x, y, z} into the particle coordinate system .},,{ zyxP ′′′
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reference frame.  This matrix will be denoted by PS  and relates the incident and scat-
tered field vector components computed in the particle reference frame for the same inci-
dence and scattering directions:
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The amplitude scattering matrix with respect to the laboratory reference frame can be
expressed in terms of the matrix PS  as follows.  Denote by t  a 22×  matrix that
transforms the electric field vector components of a transverse electromagnetic wave
computed in the laboratory reference frame into those computed in the particle refer-
ence frame:
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where n̂  is a unit vector in the direction of light propagation; ),( LL ϕϑ  and ),( PP ϕϑ
specify this direction with respect to the laboratory and particle reference frames, re-
spectively.  The t  matrix depends on n̂  as well as on the orientation of the particle
relative to the laboratory reference frame, specified by the Euler angles .  and  ,  , γβα
The inverse transformation is
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where
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We then easily derive

),,;ˆ(),,;,;,( sca1incincscasca γβαγβαϕϑϕϑ n−= tS LLLL
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To determine the matrix ,t  we proceed as follows.  Denote by α  a 23×  matrix
that transforms the ϑ  and ϕ components of the electric field vector into its x, y, and z
components,

, ),(
�
�
�

�

�
�
�

�
=

�
�
�

�

�

�
�
�

�

�

ϕ

ϑϕϑ
E
E

E
E
E

z

y

x

α  (2.73)

and by β  a 33×  matrix that expresses the x, y, and z components of a vector in the
particle coordinate system in terms of the x, y, and z components of the same vector in
the laboratory coordinate system,
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We then have

),,( ),,( ),(),,;ˆ( 1
LLPP ϕϑγβαϕϑγβα αβαt −=n  (2.75)

where ),(1
PP ϕϑ−α  is a suitable left inverse of ).,( PP ϕϑα

The matrices entering the right-hand side of Eq. (2.75) are as follows (Arfken and
Weber 1995, pp. 118 and 189):
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To express the angles PP ϕϑ and  in terms of the angles ,and LL ϕϑ  we rewrite Eq.
(2.74) as
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where ),( LL ϕϑ  and ),( PP ϕϑ  are spherical angular coordinates of an arbitrary unit
vector in the laboratory and particle reference frames, respectively.  Equations (2.78)
and (2.79) and simple algebra then give

),cos(sinsincoscoscos αϕβϑβϑϑ −+= LLLP  (2.80)
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One easily verifies that if 0  and  ,0  ,0 === γβα  (i.e., the particle reference
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frame coincides with the laboratory reference frame), then ,LP ϑϑ =  ,LP ϕϕ =
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and
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For rotationally symmetric particles, it is often advantageous to choose the particle
coordinate system such that its z-axis is directed along the axis of particle symmetry.
In this case the orientation of the particle with respect to the laboratory coordinate
system is independent of the Euler angle ,γ  so that we can set γ  = 0 and get instead
of Eqs. (2.78), (2.81), and (2.82)
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In summary, the numerical scheme for computing the amplitude scattering matrix
for given ,inc

Lϑ ,inc
Lϕ ,sca

Lϑ ,sca
Lϕ ,α ,β  and γ  is as follows:

● calculation of ,inc
Pϑ ,inc

Pϕ ,sca
Pϑ  and sca

Pϕ  via Eqs. (2.80)–(2.82);
● calculation of the matrix ),,( γβαβ  via Eq. (2.78);
● calculation of the matrices ),,( incinc

LL ϕϑα  ),,( scasca
LL ϕϑα  ),,( incinc1

PP ϕϑ−α  and
),( scasca1

PP ϕϑ−α  via Eqs. (2.76) and (2.77);
● calculation of the matrices ),,;ˆ( inc γβαnt  and ),,;ˆ( sca1 γβαn−t  via Eq.

(2.75);
● calculation of the matrix ),;,( incincscasca

PPPP
P ϕϑϕϑS  using one of the available

analytical or numerical techniques;
● calculation of the matrix ),,;,;,( incincscasca γβαϕϑϕϑ LLLL

LS  via Eq. (2.72).

We finally remark that because the particle reference frame can, in principle, be
chosen arbitrarily, Eq. (2.72) can be considered as a general rotation transformation
law expressing the amplitude scattering matrix in the original coordinate system in
terms of the amplitude scattering matrix computed in a rotated coordinate system.

2.5 Poynting vector of the total field

Although the knowledge of the amplitude scattering matrix provides a complete de-
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scription of the monochromatic scattering process in the far-field zone, measurement
of the amplitude scattering matrix is a very complicated experimental problem in-
volving the determination of both the amplitude and the phase of the incident and
scattered waves.  Measuring the phase is especially difficult, and only a handful of
such experiments have been performed, all using the microwave analog technique
(Gustafson 2000).  The majority of other experiments have dealt with quasi-
monochromatic rather than monochromatic light and involved measurements of de-
rivative quantities having the dimension of energy flux rather than the electric field
itself.  It is therefore useful to characterize the scattering process using quantities that
are easier to measure and are encountered more often, even though they may provide
a less complete description of the scattering pattern in some cases.  These quantities
will be introduced in this and the following sections.

We begin by writing the time-averaged Poynting vector �� )(rS  at any point in the
far-field zone as the sum of three terms:
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are Poynting vectors associated with the incident and the scattered fields, respec-
tively, whereas
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can be interpreted as a term caused by interaction between the incident and the scat-
tered fields. Let us consider a scattering object illuminated by a plane electromagnetic
wave. Recalling Eqs. (1.36), (1.38), (1.42), (2.25), and (2.57), we have for the inci-
dent wave in the far-field zone of the scattering particle
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where rr ˆr=  is the radius vector connecting the particle and the observation point.
The first relation of Eq. (2.1) and Eqs. (2.23), (2.24), (2.40), and (2.49)–(2.50) give
for the scattered wave:
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Consider now a well-collimated detector of electromagnetic radiation placed at a
distance r from the particle in the far-field zone, with its surface S∆  aligned normal
to and centered on the straight line extending from the particle in the direction of the
unit vector r̂  (Fig. 2.3).  We assume that the dimension of the detector surface is
much greater than any dimension of the scattering object and the wavelength but
much smaller than r.  Furthermore, we assume that 2∆ rS  is smaller than the detec-
tor solid-angle field of view Ω  so that all radiation scattered by the particle and im-
pinging on S∆  is detected.  Obviously, the term �� )(inc rS  does not contribute to the
detected signal unless .ˆˆ incnr =   From Eqs. (2.88)–(2.95), it is straightforward to show
that the total electromagnetic power received by the detector is
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when ,ˆˆ incsca nn ≠  whereas for the exact forward-scattering direction
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Figure 2.3.  The response of the collimated detector depends on the line of sight.



2   Scattering, absorption, and emission by an arbitrary finite particle 49

��⋅= )(ˆd )ˆ( inc

∆  

inc
∆ rSnn SW

S
S

  ])()([ˆd || 
2
1∆ extsca

 
inc

∆  

2inc
0

0

1
��+��⋅+= rSrSnE SS

Sµ
ε

��⋅+�
�

�
�
�

� +≈ )(ˆˆd|)ˆ(|1|| 
2
1∆ extinc

∆  

22incsca
12

2inc
0

0

1 rSnrnEE rr
r

S
Ωµ

ε

])ˆ(Im[ 2|)ˆ(|1|| 
2
1∆ inc

0
incsca

1
0

1

1

2incsca
12

2inc
0

0

1 ∗⋅−�
�

�
�
�

� +≈ EnEnEE
µ
επ

µ
ε

kr
S

 ),(])ˆ(Im[ 2 || 
2
1∆ 2inc

0
incsca

1
0

1

1

2inc
0

0

1 −∗ +⋅−= rO
k

S EnEE
µ
επ

µ
ε  (2.97)

where 2∆∆ rS=Ω  is the solid angle element centered at the direction incn̂  and
formed by the detector surface at the distance r from the particle.  The term

2inc
0012

1 || ∆ EµεS  on the right-hand side of Eq. (2.97) is proportional to the detector

area S∆  and is equal to the electromagnetic power that would be received by detector
1 in the absence of the scattering particle, whereas )ˆ(Im[ )2( incsca

1011 nEµεπ k−

]inc
0

∗⋅E  is an attenuation term independent of ,∆S  caused by interposing the particle
between the light source and the detector.  Thus, a well-collimated detector located in
the far-field zone and having its surface S∆  aligned normal to the exact forward-
scattering direction (i.e., ,ˆˆ incsca nn =  detector 1 in Fig. 2.3) measures the power of the
incident light attenuated by interference of the incident and the scattered fields plus a
relatively small contribution from the scattered light, whereas a detector with surface
aligned normal to any other scattering direction (i.e., ,ˆˆ incsca nn ≠  detector 2 in Fig.
2.3) “sees” only the scattered light.  These are two fundamental features of electro-
magnetic scattering by a small particle.  Equation (2.97) is a representation of the so-
called optical theorem and will be further discussed in Section 2.8.

2.6 Phase matrix

In the thought experiment described in the previous section and shown schematically
in Fig. 2.3, it is assumed that the detectors can measure only the total electromagnetic
power and that they make no distinction between electromagnetic waves with differ-
ent states of polarization.  Many detectors of electromagnetic energy are indeed po-
larization-insensitive.  However, by interposing a polarizer between the source of
light and the scattering particle one can generate incident light with a specific state of
polarization, whereas interposing a polarizer between the scattering particle and the
detector enables the detector to measure the power corresponding to a particular po-
larization component of the scattered light.  By repeating the measurement for a num-
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ber of different combinations of the polarizers one can, in principle, determine the
specific prescription for the transformation of a complete set of polarization charac-
teristics of the incident light into that of the scattered light, provided that both sets of
characteristics have the same dimension of energy flux (Section 8.1).  As we saw in
Chapter 1, convenient complete sets of polarization characteristics having the dimen-
sion of monochromatic energy flux are the coherency and the Stokes vectors.  So we
will now assume that the device shown schematically in Fig. 2.3 can (i) generate inci-
dent light with different (but physically realizable) combinations of coherency or
Stokes vector components, and (ii) measure the electromagnetic power associated
with any component of the coherency vector or the Stokes vector and equal to the
integral of the component over the surface S∆  of the collimated detector aligned
normal to the direction of propagation .r̂  The component itself is then found by di-
viding the measured power by .∆S

To derive the relationship between the polarization characteristics of the incident
and the scattered waves for scattering directions away from the incidence direction

),ˆˆ( incnr ≠  we first define the respective coherency vectors (cf. Eqs. (1.53), (2.24),
and (2.25)):
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Equation (2.30) and simple algebra lead to the following formula describing the trans-
formation of the coherency column vector of the incident wave into that of the scat-
tered wave:

,)ˆ,ˆ(1)ˆ( incincsca
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r
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where the elements of the coherency phase matrix )ˆ,ˆ( incsca nnJZ  are quadratic combi-
nations of the elements of the amplitude scattering matrix :)ˆ,ˆ( incsca nnS
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Analogously, the Stokes phase matrix Z describes the transformation of the Stokes
column vector of the incident wave into that of the scattered wave,
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(cf. Eq. (1.54)); the matrices D  and 1−D  were defined by Eqs. (1.55) and (1.57), re-
spectively.  Explicit formulas for the elements of the Stokes phase matrix in terms of
the amplitude scattering matrix elements follow from Eqs. (2.101) and (2.103):
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11 SSSSZ +++=      (2.106)
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1
12 SSSSZ −+−=      (2.107)

),Re(    2122121113
∗∗ +−= SSSSZ      (2.108)

),Im(    2122121114
∗∗ −−= SSSSZ      (2.109)
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21 SSSSZ −−+=      (2.110)
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1
22 SSSSZ +−−=      (2.111)

),Re(    2122121123
∗∗ −−= SSSSZ      (2.112)

),Im(    2122121124
∗∗ +−= SSSSZ      (2.113)

),Re(    1222211131
∗∗ +−= SSSSZ      (2.114)
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),Re(    1222211132
∗∗ −−= SSSSZ      (2.115)

),Re(    2112221133
∗∗ += SSSSZ      (2.116)

),Im(    1221221134
∗∗ += SSSSZ      (2.117)

),Im(    1222112141
∗∗ +−= SSSSZ      (2.118)

),Im(    1222112142
∗∗ −−= SSSSZ      (2.119)

),Im(    2112112243
∗∗ −= SSSSZ      (2.120)

).Re(    2112112244
∗∗ −= SSSSZ      (2.121)

Finally, the modified Stokes and circular-polarization phase matrices are given by
1incscaincscaMS )ˆ,ˆ()ˆ,ˆ( −= BBZZ nnnn      (2.122)

and

,)ˆ,ˆ()ˆ,ˆ( 1incscaincscaCP −= AAZZ nnnn      (2.123)

respectively (see Eqs. (1.59)–(1.66)).  The elements of all phase matrices have the
same dimension of area. The matrices Z  and MSZ  are real-valued.  Like the ampli-
tude scattering matrix, the phase matrices explicitly depend on incϕ  and scaϕ  even
when the incident and/or scattered light propagates along the z-axis.

Up to this point we have considered the scattering of only monochromatic plane
waves. However, it is obvious that Eqs. (2.100) and (2.102) remain valid even when
the incident radiation is a parallel quasi-monochromatic beam of light, provided that
the coherency and Stokes vectors entering these equations are averages over a time
interval long compared with the period of fluctuations (Section 1.6).  Hence, the
phase matrix concept is quite useful even in the more general situations involving
quasi-monochromatic light.

In general, all 16 elements of any of the phase matrices introduced above are non-
zero. However, the phase matrix elements of a single particle are expressed in terms
of only seven independent real numbers resulting from the four moduli || ijS

)2,1,( =ji  and three differences in phase between the .ijS  Therefore, only seven of
the phase matrix elements are actually independent, and there must be nine unique
relations among the 16 phase matrix elements. Furthermore, the specific mathematical
structure of the phase matrix can also be used to derive many useful linear and quad-
ratic inequalities for the phase matrix elements.  Two important inequalities are

011 ≥Z  (this property follows directly from Eq. (2.106)) and 11|| ZZij ≤  (i, j = 1, …,
4). The reader is referred to Hovenier et al. (1986), Cloude and Pottier (1996), and
Hovenier and van der Mee (1996, 2000) for a review of this subject and a discussion
of how the general properties of the phase matrix can be used for testing the results of
theoretical computations and laboratory measurements.

From Eqs. (2.106)–(2.121) and (2.64) we derive the reciprocity relation for the
Stokes phase matrix:
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,)]ˆ,ˆ([)ˆ,ˆ( 3
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and T denotes the transpose of a matrix, as before.  The reciprocity relations for other
phase matrices can be obtained easily from Eqs. (2.103), (2.122), and (2.123):
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The backscattering theorem, Eq. (2.65), along with Eqs. (2.106), (2.111), (2.116), and
(2.121), leads to the following general property of the backscattering Stokes phase
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matrix (Mishchenko et al. 2000b):

.0)ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( 44332211 =−−−+−−− nnnnnnnn ZZZZ      (2.131)

Electromagnetic scattering most typically produces light with polarization char-
acteristics different from those of the incident beam.  If the incident beam is unpolar-
ized, i.e., ,]000[ Tincinc I=I  the scattered light generally has at least one non-zero
Stokes parameter other than intensity:

.     ,     ,      , inc
41

scainc
31

scainc
21

scainc
11

sca IZVIZUIZQIZI ====      (2.132)

This phenomenon is traditionally called “polarization” and results in scattered light
with non-zero degree of polarization, see Eq. (1.111),
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ZZZ
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++

=      (2.133)

Obviously, if the incident light is unpolarized, then the element 11Z  determines the
angular distribution of the scattered intensity.  When the incident beam is linearly
polarized, i.e., ,]0[ Tincincincinc UQI=I  the scattered light may become elliptically
polarized ).0( sca ≠V  Conversely, when the incident light is circularly polarized, i.e.,

,]00[ Tincincinc VI=I  the scattered light may become partially linearly polarized
0( sca ≠Q  and/or ).0sca ≠U   A general feature of scattering by a single particle is that

if the incident beam is fully polarized )1( inc =P  then the scattered light is also fully
polarized. Hovenier et al. (1986) gave a proof of this property based on the general
mathematical structure of the Stokes phase matrix.  Thus, a single particle does not
depolarize fully polarized incident light.  We will see later, however, that single scat-
tering by a collection of non-identical nonspherical particles (including particles of
the same kind but with different orientations) can result in depolarization of the inci-
dent polarized light, and this is another important property of electromagnetic scat-
tering.

2.7 Extinction matrix

Let us now consider the special case of the exact forward-scattering direction
).ˆˆ( incnr =   As in Section 2.6, we begin by defining the coherency vector of the total

field for r̂  very close to incn̂  as
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where the total electric field is

).ˆ()ˆ()ˆ( scainc rErErE rrr +=      (2.135)

Integrating the elements of )ˆ( rrJ  over the surface of the collimated detector aligned
normal to incn̂  and using Eqs. (2.92), (2.94), and (2.98), we derive after rather lengthy
algebraic manipulations

),()ˆ(∆)ˆ(∆ 2incincincinc −+−= rOSrS J JΚJJ nn      (2.136)

where the elements of the 44×  so-called coherency extinction matrix ),( incinc ϕϑJΚ
are expressed in terms of the elements of the forward-scattering amplitude matrix

),;,( incincincinc ϕϑϕϑS  as follows:
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Switching again to Stokes parameters, we have

),()ˆ(∆)ˆ(∆ 2incincincinc −+−= rOSrS IΚII nn      (2.138)

where ).ˆ()ˆ( incinc nn rr DJI =   The Stokes extinction matrix is given by

.)ˆ()ˆ( 1incinc −= DDΚΚ nn J      (2.139)

The explicit formulas for the elements of this matrix in terms of the elements of the
matrix ),;,( incincincinc ϕϑϕϑS  are as follows:
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Thus, only seven elements of the Stokes extinction matrix are independent.  It is easy
to verify that this is also true of the coherency extinction matrix.  The elements of
both matrices have the dimension of area and explicitly depend on incϕ  even when
the incident wave propagates along the z-axis.

Equations (2.136) and (2.138) represent the most general form of the optical theo-
rem.  They show that the presence of the scattering particle changes not only the total
power of the electromagnetic radiation received by the detector facing the incident
wave (detector 1 in Fig. 2.3) but also, perhaps, its state of polarization.  This phe-
nomenon is called dichroism and results from different attenuation rates for different
polarization components of the incident wave.  Obviously, Eqs. (2.136) and (2.138)
remain valid if the incident radiation is a parallel quasi-monochromatic beam of light
rather than a monochromatic plane wave.

From Eqs. (2.64) and (2.140)–(2.146) we obtain the reciprocity relation for the
Stokes extinction matrix:

,)]ˆ([)ˆ( 3
Tinc

3
inc ∆Κ∆Κ nn =−          (2.147a)

where the matrix 3∆  is given by Eq. (2.125).  It is also easy to derive a related sym-
metry property:
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In other words, the only effect of reversing the direction of propagation is to change
the sign of four elements of the Stokes extinction matrix.  The modified Stokes and
circular-polarization extinction matrices are given by

,)ˆ( )ˆ( 1incincMS −= BBΚΚ nn      (2.148)

.)ˆ()ˆ( 1incincCP −= AAΚΚ nn      (2.149)

Reciprocity relations for the matrices ),ˆ( incnJΚ  ),ˆ( incMS nΚ  and )ˆ( incCP nΚ  can be
derived from Eq. (2.147a) by analogy with Eqs. (2.126)–(2.128):

,)]ˆ([)ˆ( 23
Tinc

23
inc ∆Κ∆Κ nn JJ =−      (2.150)

,][)]ˆ([)ˆ( 1MSTincMSMSincMS −=− ∆Κ∆Κ nn      (2.151)

.)]ˆ([)ˆ( TincCPincCP nn ΚΚ =−      (2.152)

2.8 Extinction, scattering, and absorption cross sections

Knowledge of the total electromagnetic field in the far-field zone also allows us to
calculate such important optical characteristics of the scattering object as the total
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scattering, absorption, and extinction cross sections.  These optical cross sections are
defined as follows.  The product of the scattering cross section scaC  and the incident
monochromatic energy flux gives the total monochromatic power removed from the
incident wave as a result of scattering of the incident radiation in all directions.
Analogously, the product of the absorption cross section absC  and the incident mono-
chromatic energy flux gives the total monochromatic power removed from the inci-
dent wave as a result of absorption of light by the object.  Of course, the absorbed
electromagnetic energy does not disappear but, rather, is converted into other forms of
energy. Finally, the extinction cross section extC  is the sum of the scattering and ab-
sorption cross sections and, when multiplied by the incident monochromatic energy
flux, gives the total monochromatic power removed from the incident light by the
combined effect of scattering and absorption.

To determine the total optical cross sections, we surround the object by an imagi-
nary sphere of radius r large enough to be in the far-field zone.  Since the surrounding
medium is assumed to be nonabsorbing, the net rate at which the electromagnetic
energy crosses the surface S of the sphere is always non-negative and is equal to the
power absorbed by the particle:

rrSrrrS ˆ)(ˆdˆ)(d
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2
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π

rSW
S

     (2.153)

(see Eq. (1.31)).  According to Eq. (2.88), absW  can be written as a combination of
three terms:

, extscaincabs WWWW +−=      (2.154)

where
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incW  vanishes identically because the surrounding medium is nonabsorbing and
)(inc rS  is a constant vector independent of r, whereas sca W  is the rate at which the

scattered energy crosses the surface S in the outward direction.  Therefore, extW  is
equal to the sum of the energy scattering rate and the energy absorption rate:

.absscaext WWW +=      (2.156)

Inserting Eqs. (2.90)–(2.95) in Eq. (2.155) and recalling the definitions of the ex-
tinction and scattering cross sections, we derive after some algebra
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In view of Eqs. (2.24), (2.30), (2.102), (2.104), (2.105), and (2.140)–(2.143), Eqs.
(2.157) and (2.158) can be rewritten as
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The absorption cross section is equal to the difference of the extinction and scattering
cross sections:

.0scaextabs ≥−= CCC      (2.161)

The single-scattering albedo is defined as the ratio of the scattering and extinction
cross sections:

.1
ext

sca ≤=
C
Cϖ      (2.162)

This quantity is widely used in radiative transfer theory and is interpreted as the prob-
ability that a photon interacting with the particle will be scattered rather than ab-
sorbed.  Obviously, 1=ϖ  for nonabsorbing particles.  Equations (2.159) and (2.160)
(and thus Eqs. (2.161) and (2.162)) also hold for quasi-monochromatic incident light
provided that the elements of the Stokes vector entering these equations are averages
over a time interval long compared with the period of fluctuations.  All cross sections
are inherently real-valued positive quantities and have the dimension of area.  They
depend on the direction, polarization state, and wavelength of the incident light as
well as on the particle size, morphology, relative refractive index, and orientation
with respect to the reference frame.

Equation (2.159) is another representation of the optical theorem and, along with
Eqs. (2.140)–(2.143), shows that although extinction is the combined effect of ab-
sorption and scattering in all directions by the particle, it is determined only by the
amplitude scattering matrix in the exact forward direction.  This is a direct conse-
quence of the fact that extinction results from interference between the incident and
scattered light, Eq. (2.91), and the presence of delta-function terms in Eqs. (2.92) and
(2.93).  Having derived Eq. (2.157), we can now rewrite Eq. (2.97) in the form
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This shows that the extinction cross section is a well-defined, observable quantity and
can be determined by measuring )ˆ( inc

∆ nSW  with and without the particle interposed
between the source of light and the detector.  The net effect of the particle is to reduce
the detector area by “casting a shadow” of area .extC   Of course, this does not mean
that extC  is merely given by the area G of the particle geometrical projection on the
detector surface.  However, this geometrical interpretation of the extinction cross sec-
tion illustrates the rationale for introducing the dimensionless efficiency factor for
extinction as the ratio of the extinction cross section to the geometrical cross section:

.ext
ext G

CQ =      (2.164)

We will see in later chapters that extQ  can be considerably greater or much less than
unity. The efficiency factors for scattering and absorption are defined analogously:
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also has the dimension of area and is called the differential scattering cross section; it
describes the angular distribution of the scattered light and specifies the electromag-
netic power scattered into unit solid angle about a given direction per unit incident
intensity.  (Note that the symbol Ωdd scaC  should not be interpreted as the derivative
of a function of .)Ω   The differential scattering cross section depends on the polari-
zation state of the incident light as well as on the incidence and scattering directions.
Clearly,

Ωπ d
dˆd sca

4  
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CC r=

(cf. Eqs. (2.160) and (2.166)).  A quantity related to the differential scattering cross
section is the phase function )ˆ,ˆ( incnrp  defined as
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The convenience of the phase function is that it is dimensionless and normalized:
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The asymmetry parameter �� Θcos  is defined as the average cosine of the scattering
angle )ˆˆ(arccos incnr ⋅=Θ  (i.e., the angle between the incidence and scattering direc-
tions):
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p      (2.169)

The asymmetry parameter is positive if the particle scatters more light toward the
forward direction ),0( =Θ  is negative if more light is scattered toward the backscat-
tering direction ),( πΘ =  and vanishes if the scattering is symmetric with respect to
the plane perpendicular to the incidence direction.  Obviously, ].1,1[cos +−∈�� Θ
The limiting values correspond to the phase functions )ˆˆ(δ4 incnr +π  and −r̂(δ4π

),ˆ incn  respectively.

2.9 Radiation pressure and radiation torque

The scattering and absorption of an electromagnetic wave cause the transfer of mo-
mentum from the electromagnetic field to the scattering object.  The resulting force,
called radiation pressure, is used in laboratories to levitate and size small particles
(Ashkin and Dziedzic 1980; Chýlek et al. 1992; Ashkin 2000) and affects the spatial
distribution of interplanetary and interstellar dust grains (Il’in and Voshchinnikov
1998; Landgraf et al. 1999).  If the amplitudes of the incident and scattered fields do
not change in time, the force due to radiation pressure averaged over the period ωπ2
of the time-harmonic incident wave is

nrF ˆ)(d M
  

⋅��= TS
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�

     (2.170)

(Stratton 1941, Section 2.5; Jackson 1998, Section 6.7), where MT
�

 is the so-called
Maxwell stress tensor, the integration is performed over a closed surface S surround-
ing the scattering object, and n̂  is the unit vector in the direction of the local outward
normal to S.  Assume, for simplicity, that the scattering object is surrounded by a vac-
uum.  Then the instantaneous value of the Maxwell stress tensor is
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where 001 µε=c  is the speed of light in a vacuum.  By analogy with Eq. (1.24),

we have for the time average of the Maxwell stress tensor

].)|)(||)(|()()()()(Re[)( 2
0

2
02

1
002

1
M IT

��

rHrErHrHrErEr µεµε +−⊗+⊗=�� ∗∗

  (2.172)



2   Scattering, absorption, and emission by an arbitrary finite particle 61

It is convenient to choose for S a sphere centered at the scattering object and having a
radius r large enough to be in the far-field zone.  Then Eq. (2.170) becomes
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2 rrrF ⋅��= rTr
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π
     (2.173)

The total electric and magnetic fields are vector sums of the respective incident and
scattered fields given by Eqs. (2.92)–(2.95).  Because the incident and scattered fields
are transverse, the first and second terms in square brackets on the right-hand side of
Eq. (2.172) do not contribute to the integral in Eq. (2.173).  We thus have
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The terms 2inc |)(| rE  and 2inc |)(| rH  are constants independent of r, so their contribu-
tion to F is simply zero.  The contribution of the remaining terms follows from Eqs.
(2.92)–(2.95) and the vector identity :))(())(()()( cbdadbcadcba ⋅⋅−⋅⋅=×⋅×
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or, in view of Eqs. (2.102), (2.104), (2.105), (2.157), and (2.166),

incinc
12

incinc
11

4  

inc
ext

inc )ˆ,ˆ()ˆ,ˆ([ˆˆd 1 ˆ1 QZIZ
c

IC
c

nrnrrrnF +−=
π

])ˆ,ˆ()ˆ,ˆ( incinc
14

incinc
13 VZUZ nrnr ++

Ωπ d
dˆˆd1 ˆ1 sca

4  

incinc
ext

inc CI
c

IC
c

rrn −=      (2.176)

(Mishchenko 2001).
Although the first term on the right-hand side of Eq. (2.176) represents a force in

the direction of ,ˆ incn  the direction of the total radiation force is different, in general,
from the direction of propagation of the incident beam and depends on its polarization
state because of the second term.  The projection of the total force on any direction n̂
is simply the dot product .n̂F ⋅  In particular, the component of the force in the direc-
tion of propagation of the incident light is
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 pr
inc1 CI

c
=      (2.177)

(see Eq. (2.169)), where the quantity

��−= Θcosscaextpr CCC      (2.178)

is called the radiation-pressure cross section.  By analogy with Eqs. (2.164) and
(2.165), we can define the radiation-pressure efficiency factor as

.pr
pr G

C
Q =      (2.179)

Although being the result of a lengthy rigorous derivation, Eq. (2.177) allows a
transparent physical interpretation.  A beam of light carries linear momentum as well
as energy.  The direction of the momentum is that of propagation, while the absolute
value of the momentum is energy/(speed of light).  Since the total momentum of the
electromagnetic field and the scattering object must be constant, the radiation force
exerted on the object is equal to the momentum removed from the total electromag-
netic field per unit time.  Consider the component of the force in the direction of inci-
dence.  The momentum removed from the incident beam per unit time is .inc

ext cIC
Of this amount, the part proportional to absC  is not replaced, whereas the part propor-
tional to scaC  is to some extent replaced by the contribution due to the projection of
the moment of the scattered light on the direction of incidence.  This contribution is
equal to the integral of cI Θcossca  over all scattering directions, or

.cossca
inc cCI �� Θ   Note that van de Hulst (1957) used similar arguments as an heu-

ristic derivation of Eq. (2.177).
If the absolute temperature of the particle is above zero then light emitted by the

particle in all directions causes an additional component of the radiation force.  This
component will be discussed in Section 2.10.

The radiation pressure is accompanied by the radiation torque exerted on the par-
ticle and given by
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3 rrrr ×��⋅−= Tr
�

π
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(cf. p. 288 of Jackson 1998), where r is the radius of a sphere S centered inside the
scattering particle and having its surface in the far-field zone.  Since rr ˆˆ ×⋅ I

�

 vanishes
identically, only the first two terms in square brackets on the right-hand side of Eq.
(2.172) contribute to the integrals in Eq. (2.180).  The evaluation of this contribution
is complicated because it requires the knowledge of not only the transverse compo-
nent of the scattered electric and magnetic fields but also of the longitudinal compo-
nent, which we have so far neglected because it decays faster than .1 r   Marston and
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Crichton (1984) computed Γ  for homogeneous and isotropic spherical particles,
whereas Draine and Weingartner (1996) derived a formula for Γ  in the framework of
the so-called discrete dipole approximation (see Section 6.5).

2.10 Thermal emission

If the particle’s absolute temperature T is above zero, it can emit as well as scatter and
absorb electromagnetic radiation.  The emitted radiation in the far-field zone of the
particle propagates in the radial direction, i.e., along the unit vector ,ˆ rrr =  where r
is the position vector of the observation point with origin inside the particle.  The en-
ergetic and polarization characteristics of the emitted radiation are described by a
four-component Stokes emission column vector ),,ˆ(e ωTrΚ  defined in such a way
that the net rate at which the emitted energy crosses a surface element S∆  normal to
r̂  at a distance r from the particle at angular frequencies from ω  to ωω ∆+  is

.∆∆),,ˆ(1
1e2

e ωωΚ ST
r

W r=      (2.181)

),,,ˆ(1e ωΚ Tr  the first component of the column vector, can also be interpreted as the
amount of electromagnetic energy emitted by the particle in the direction r̂  per unit
solid angle per unit frequency interval per unit time.

In order to calculate ),,,ˆ(e ωTrΚ  let us assume that the particle is placed inside an
opaque cavity of dimensions large compared with the particle and any wavelength
under consideration (Fig. 2.4a).  If the cavity and the particle are maintained at the
constant absolute temperature T, then the equilibrium electromagnetic radiation inside
the cavity is isotropic, homogeneous, and unpolarized (Mandel and Wolf 1995).  This
radiation can be represented as a collection of quasi-monochromatic, unpolarized,
incoherent beams propagating in all directions and characterized by the Planck black-
body energy distribution ).,(b ωTI   Specifically, at any point inside the cavity the
amount of radiant energy per unit frequency interval, confined to a small solid angle

Ω∆  about any direction, which crosses an area S∆  normal to this direction in unit
time is given by
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where ,2πh=�  h is Planck’s constant, c is the speed of light in a vacuum, and Bk  is
Boltzmann’s constant.

Consider an imaginary collimated, polarization-sensitive detector of electromag-
netic radiation with surface S∆  and small solid-angle field of view ,∆Ω  placed at a
distance r from the particle (Fig. 2.4(a)).  The dimension of the detector surface is
much greater than any dimension of the particle and r is large enough to be in the far-
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field zone of the particle but smaller than .∆∆ ΩS   The latter condition ensures

that all plane wave fronts incident on the detector in directions falling into its solid-
angle field of view Ω∆  are equally attenuated by the particle (Fig. 2.4(b)).  The sur-
face S∆  is aligned normal to and centered on ,r̂  where r̂  is the unit vector originat-
ing inside the particle and pointing toward the detector.

In the absence of the particle, the polarized signal per unit frequency interval
measured by the detector would be given by

,∆∆),(b Ωω STI      (2.183)

where

Particle

(a)

(b)

ΩΩ

Particle Detector

S

r̂

Figure 2.4.  (a) Cavity, particle, and electromagnetic radiation field in thermal equilibrium.
(b) Illumination geometry.
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is the blackbody Stokes column vector.  The particle attenuates the incident black-
body radiation, emits radiation, and scatters the blackbody radiation coming from all
directions in the direction of the detector.  Taking into account that only the radiation
emitted and scattered by the particle within the solid-angle field of view Ω∆  is de-
tected (Fig. 2.4(b)), we conclude that the polarized signal measured by the detector in
the presence of the particle is
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           (2.185)

(see Eqs. (2.138) and (2.102)).  However, in thermal equilibrium the presence of the
particle does not change the distribution of radiation.  Therefore, we can equate ex-
pressions (2.183) and (2.185) and finally derive for the ith component of eΚ

.4...,,1      ,),ˆ,ˆ(ˆd),(),ˆ(),(),,ˆ( 1
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π

rrrrr     (2.186)

This important relation expresses the Stokes emission vector in terms of the leftmost
columns of the extinction and phase matrices and the Planck energy distribution.
Although our derivation assumed that the particle was in thermal equilibrium with the
surrounding radiation field, emissivity is a property of the particle only.  Therefore,
Eq. (2.186) is valid for any particle, in equilibrium or in nonequilibrium.  A more
detailed derivation of this formula based on the so-called fluctuation-dissipation theo-
rem is given by Tsang et al. (2000).

As we pointed out in Section 2.9, the emitted radiation contributes to the total
radiation force exerted on the particle.  The emitted radiation is incoherent and does
not interact with the incident and scattered radiation, thereby generating an independ-
ent component of the radiation force.  Furthermore, emission is analogous to scatter-
ing in that it generates radiation propagating radially in all directions.  Therefore, we
can write the emission component of the radiation force by analogy with the scatter-
ing component given by the second term on the right-hand side of Eq. (2.176):
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Unlike the extinction and scattering components of the radiation force, the emission
component depends on the particle temperature.  Another effect of emission is to pro-
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duce a component of the radiation torque independent of that caused by scattering and
absorption.

2.11 Translations of the origin

We began Section 2.2 by choosing the origin of the coordinate system close to the
geometrical center of the scattering object, and that step was essential in deriving the
formulas describing electromagnetic scattering in the far-field zone.  Although the
origin can be chosen arbitrarily, in general, the amplitude scattering matrix will
change if the origin is moved, even if the orientation of the particle with respect to the
reference frame remains the same.  It is, therefore, important to supplement the rota-
tion transformation law of Eq. (2.72) by a translation law describing the transforma-
tion of the amplitude scattering matrix upon a shift in the origin.

Let us consider two reference frames with origins 1 and 2 inside a scattering parti-
cle (Fig. 2.5).  We assume that both reference frames have the same spatial orienta-
tion and denote the respective amplitude scattering matrices as 1 S  and .2S   Let the
particle be illuminated by a plane electromagnetic wave

),ˆiexp()( 1
inc

1
inc
01

inc rnErE ⋅= k      (2.188)

where 1r  is the position vector originating at origin 1.  Let 2r  be the position vector
of the same observation point but originating at origin 2.  Since ,1221 rrr +=  where

12r  connects origins 1 and 2, the incident electric field at the same observation point
can also be written as

).ˆiexp()ˆiexp()( 12
inc

12
inc

1
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inc rnrnErE ⋅⋅= kk      (2.189)

The scattered field at an observation point does not depend on how we choose the
origin of the coordinate system as long as the incident field remains the same.  There-
fore, we have in the far-field zone

1r

2r

12r

Observation
point

Scattering
object

1

2

Figure 2.5.  The amplitude matrix changes when the origin is shifted.  The position vectors 1r
and 2r  originate at points 1 and 2, respectively.
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Taking the limits ∞→11rk  and ∞→21rk  and using the law of cosines,
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we finally obtain
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Equation (2.191) is the sought translation transformation law for the amplitude scat-
tering matrix.  It remains valid even if either origin lies outside the scattering particle,
as long as the asymptotic far-field conditions of Eq. (2.193) are satisfied.

Despite the fact that the amplitude scattering matrix changes when the origin is
shifted, the extinction and phase matrices remain invariant.  Indeed, the factor ∆ie  is
common to all elements of the amplitude scattering matrix and disappears when mul-
tiplied by its complex-conjugate counterpart, whereas the phase ∆  vanishes identi-
cally in the exact forward-scattering direction (cf. Eqs. (2.106)–(2.121) and (2.140)–
(2.146)).  It is straightforward to verify that all optical cross sections and efficiency
factors, the single-scattering albedo, the phase function, the asymmetry parameter, the
emission vector, and the radiation force also remain unchanged.

Further reading

The books by Colton and Kress (1983), Varadan et al. (1991) and de Hoop (1995)
provide a thorough theoretical introduction to the propagation and scattering of elec-
tromagnetic, acoustic, and elastodynamic waves.  Appendix 3 of Van Bladel (1964)
and chapter 6 of Varadan et al. (1991) list important formulas from vector and dyadic
algebra and vector and dyadic calculus.  The use of dyadics and dyadic Green’s func-
tions in electromagnetics is described by Tai (1993).
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Chapter 3

Scattering, absorption, and emission by collections
of independent particles

The formalism developed in the preceding chapter strictly applies only to the far-field
scattering and absorption of monochromatic or quasi-monochromatic light by an iso-
lated particle in the form of a single body or a fixed finite aggregate (Fig. 2.1) and to
the thermal emission from such a particle.  We will now describe how this formalism
can be extended to single and multiple scattering, absorption, and emission by collec-
tions of independently scattering particles under certain simplifying assumptions.

3.1 Single scattering, absorption, and emission by a small
volume element comprising randomly and sparsely
distributed particles

Consider first a small volume element having a linear dimension l, comprising a
number N of randomly positioned particles, and illuminated by a plane electromag-
netic wave.  Although the volume element is assumed to be macroscopically small, its
size must still be much larger than the size of the constituent particles and the wave-
length of the incident light.  We assume that N is sufficiently small that the mean dis-
tance between the particles is also much larger than the incident wavelength and the
average particle size.  We also assume that N is sufficiently small that the main con-
tribution to the total scattered radiation exiting the volume element comes from light
scattered only once.  In other words, the contribution to the total scattered signal of
light scattered two and more times by particles inside the volume element is assumed
to be negligibly small.  This is equivalent to requiring that the “scattering efficiency”
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2
sca

−�� lCN  of the volume element (i.e., the ratio of the total scattering cross section
of the particles contained in the volume element to the volume element’s geometrical
cross section) be much smaller than unity; �� scaC  is the average scattering cross sec-
tion per particle.  Finally, we assume that the positions of the particles during the
measurement are sufficiently random that there are no systematic phase relations be-
tween individual waves scattered by different particles.

Let the incident electric field be given by

),ˆiexp()( inc
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inc
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inc rnErE ⋅= k    (3.1)

where the position vector r originates at the geometrical center of the volume element
O.  The total electric field scattered by the volume element at a large distance r from
O can be written as the vector sum of the partial fields scattered by the component
particles:
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where the position vector r of the observation point originates at O, and the index n
numbers the particles.  Since we ignore multiple scattering, we assume that each par-
ticle is excited only by the external incident field but not by the secondary fields
scattered by other particles.  Furthermore, because the particles are widely separated,
each of them scatters the incident wave in exactly the same way as if all other parti-
cles did not exist.  Therefore, according to Section 2.11, the partial scattered fields are
given by
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where ,ˆ rrr =  )ˆ,ˆ( incnrnS  is the amplitude scattering matrix of the nth particle, cen-
tered inside that particle, the phase n∆  is given by

),ˆˆ( inc
1 rnr −⋅= Onn k∆    (3.4)

and the vector Onr  connects the origin of the volume element O with the nth particle’s
origin.  As in Section 2.11, we have assumed that
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or, equivalently,
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2
1

� 1.    (3.6)

These conditions explicitly indicate that the observation point is in the far-field zone
of the small volume element as a whole and that the latter is treated as a single scat-
terer.  We thus have
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where the total amplitude scattering matrix of the small volume element centered at O
is
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Since the n∆  vanish in the exact forward-scattering direction, substituting Eq.
(3.8) in Eqs. (2.140)–(2.146) yields the total extinction matrix of the small volume
element:

,
1

��==
=

ΚΚΚ Nn

N

n

   (3.9)

where ��Κ  is the average extinction matrix per particle.  Equation (2.159) then gives
the total extinction cross section:
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where �� extC  is the average extinction cross section per particle.  Analogously, by
substituting Eq. (3.8) in Eqs. (2.106)–(2.121) and assuming that particle positions are
sufficiently random that
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it is straightforward to show that the total phase matrix of the volume element is given
by

,
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 (3.12)

where ��Z  is the average phase matrix per particle.   Equations (2.160) and (2.161)
then give the total scattering and absorption cross sections of the volume element:
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where �� scaC  is the average scattering cross section and �� absC  the average absorp-
tion cross section per particle.  Finally, Eqs. (2.166), (2.169), (2.178), and (2.186)
yield
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where �� prC  is the average radiation-pressure cross section and �� eΚ  the average
emission vector per particle.  Thus, the optical cross sections, the phase and extinction
matrices, and the emission vector of the small volume element comprising randomly
positioned, widely separated particles are obtained by adding the respective optical
characteristics of the individual particles.  Obviously, this property of additivity also
holds when the incident light is a parallel quasi-monochromatic beam rather than a
plane electromagnetic wave.

It should be recognized that at any given moment, the particles filling the volume
element form a certain spatial configuration, and the individual waves scattered by
different particles have a specific phase relation and interfere.  However, even a min-
ute displacement of the particles or a slight change in the scattering geometry during
the measurement may change the phase differences entirely.  Therefore, in almost all
practical situations the light singly scattered by a collection of randomly positioned
particles and measured by a real detector appears to be incoherent, and the optical
characteristics of individual particles must be added without regard to phase.

Because the total phase matrix of the volume element is the sum of the phase ma-
trices of the constituent particles, the nine independent quadratic relations between the
elements of the single-particle phase matrix as well as some quadratic inequalities
(see Section 2.6) generally no longer hold.  Still, there are a number of linear and
quadratic inequalities that can be used for testing the elements of theoretically or ex-
perimentally obtained phase matrices of particle collections (Hovenier and van der
Mee 2000).  The simplest and most important of them are

011 ≥Z  (3.17)

(cf. Eqs. (2.106) and (3.12)) and

.4 ..., ,1,      ,|| 11 =≤ jiZZij  (3.18)

Obviously, the reciprocity and symmetry relations (2.124) and (2.147a,b) remain
valid for the phase and extinction matrices of the volume element.
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3.2 Ensemble averaging

Scattering media encountered in practice are usually mixtures of particles with differ-
ent sizes, shapes, orientations, and refractive indices.  Equations (3.9)–(3.16) imply
that theoretical computations of single scattering of light by a small volume element
consisting of such particles must include averaging the optical cross sections, the
phase and extinction matrices, and the emission vector over a representative particle
ensemble.  The computation of ensemble averages is, in principle, rather straightfor-
ward.  For example, for homogeneous ellipsoids with semi-axes ],,[ maxmin aaa ∈

],,[ maxmin bbb ∈  and ],[ maxmin ccc ∈  and the same refractive index, the ensemble-
averaged phase matrix per particle is
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where the Euler angles ,α  ,β  and γ  specify particle orientations with respect to the
laboratory reference frame, and ),,;,,( cbap γβα  is a probability density function
satisfying the normalization condition:
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The integrals in Eq. (3.19) are usually evaluated numerically by using appropriate
quadrature formulas.  Some theoretical techniques (e.g., the T-matrix method) allow
analytical averaging over particle orientations, thereby bypassing time-consuming
integration over the Euler angles.

It is often assumed that the shape and size distribution and the orientation distri-
bution are statistically independent. The total probability density function can then be
simplified by representing it as a product of two functions, one of which, ),,,(s cbap
describes the particle shape and size distribution and the other of which, ),,,(o γβαp
describes the distribution of particle orientations:
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Each is normalized to unity:
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In consequence, the problems of computing the shape and size and the orientation
averages are separated. Similarly, it is often convenient to separate averaging over
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shapes and sizes by assuming that particle shapes and sizes are statistically independ-
ent.  For example, the shape of a spheroidal particle can be specified by its aspect
ratio ε  (the ratio of the largest to the smallest axes) along with the designation of
either prolate or oblate, whereas the size of the particle can be specified by an
equivalent-sphere radius a.  Then the shape and size probability density function

),(s ap ε  can be represented as a product

),()(),(s anpap εε =  (3.24)

where )(εp  describes the distribution of spheroid aspect ratios and )(an  is the distri-
bution of equivalent-sphere radii.  Again, both )(εp  and )(an  are normalized to
unity: 
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In the absence of external forces such as magnetic, electrostatic, or aerodynamical
forces, all orientations of a nonspherical particle are equiprobable.  In this practically
important case of randomly oriented particles, the orientation distribution function is
uniform with respect to the Euler angles of rotation, and we have

.
8

1),,( 2randomo, π
γβα ≡p  (3.27)

An external force can make the orientation distribution axially symmetric, the axis of
symmetry being given by the direction of the force.  For example, interstellar dust
grains can be axially oriented by a cosmic magnetic field (Martin 1978), whereas
nonspherical hydrometeors can be axially oriented by the aerodynamical force re-
sulting from their non-zero falling velocity (Liou 1992).  In this case it is convenient
to choose the laboratory reference frame with the z-axis along the external force di-
rection so that the orientation distribution is uniform with respect to the Euler angles
α  and :γ

).(
4

1),,( o2axialo, β
π

γβα pp ≡  (3.28)

Particular details of the particle shape can also simplify the orientation distribution
function.  For example, for rotationally symmetric bodies it is convenient to direct the
z-axis of the particle reference frame along the axis of rotation, in which case the ori-
entation distribution function in the laboratory reference frame becomes independent
of the Euler angle :γ

).,(
2
1),,( oo βα
π

γβα pp ≡  (3.29)
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3.3 Condition of independent scattering

The inequalities (3.11a) and (3.11b) require the assumption that scattering is incoher-
ent and that the positions of the particles filling the volume element are uncorrelated
during the time necessary to make the measurement.  However, it is rather difficult to
give general and definitive criteria under which the inequalities (3.11a) and (3.11b)
are satisfied.  Also, there is no obvious prescription for specifying the minimal inter-
particle separation that allows the use of the concept of the single-particle amplitude
scattering matrix in Eq. (3.3) and makes particles effectively independent scatterers.
Exact computations for a few specific cases can perhaps provide qualitative guidance.
Figure 3.1 shows the results of exact T-matrix computations (Chapter 5) of the ratios
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versus scaϑ  for randomly oriented two-sphere clusters with touching or separated
components (Mishchenko et al. 1995).  The relative refractive index is 1.5 + i0.005,
the size parameter of the component spheres is ,51 =ak  where 1k  is the wave number
in the surrounding medium and a is the sphere radius, and the distance d between the
centers of the cluster components varies from 2a for touching spheres to 8a.  For
comparison, in the lower panel the thin solid curve depicts the results for single scat-
tering by independent spheres with 51 =ak  (regarding the upper panel, note that in
this case ;11122 ≡ZZ  see Section 4.8).  Obviously, the results for d = 8a are hardly
distinguishable from those for the independently scattering spheres.  Even as small a
distance between the component sphere centers as four times their radii combined
with averaging over cluster orientations is already sufficient to reduce greatly the
near-field and interference effects and produce scattering patterns very similar to
those for the independent particles.  For still larger spheres, with ,151 =ak  the com-
parisons that can be made from Fig. 3.2 suggest qualitative independence at even
smaller separations.  While these results with separation measured in terms of particle
size may be expected to become inapplicable for particles significantly smaller than a
wavelength, they suggest a simple approximate condition of independent scattering
by particles comparable to and larger than a wavelength.

3.4 Radiative transfer equation and coherent
backscattering

Let us now relax the requirement that the scattering medium be macroscopically small
and optically thin and be viewed from a distance much larger than its size.  We thus
assume that N is so large that the condition 2

sca
−�� lCN � 1 is violated, and the
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contribution of multiply scattered light to the total signal scattered by the medium can
no longer be ignored.  Furthermore, although the observation point is assumed to be
in the far-field zone of each constituent particle, it is not necessarily in the far-field
zone of the scattering medium as a whole, so that the observer may see scattered light
coming from different directions.  A traditional approach in such cases is to assume
that scattering by different particles is still independent (which implies that the parti-
cles are randomly positioned and widely separated) and compute the characteristics of
multiply scattered radiation by solving the so-called radiative transfer equation
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Figure 3.1.  The ratios 1122 ZZ  and (%)1121 ZZ−  for randomly oriented two-sphere clusters
with touching )2( ad =  and separated components and independently scattering spheres.  The
component sphere size parameter ak1  is 5 and the relative refractive index is 1.5 + i0.005.
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(RTE).
Radiative transfer theory originated as a phenomenological approach based on

considering the transport of energy through a medium filled with a large number of
particles and ensuring energy conservation (e.g., Chandrasekhar 1960; Sobolev 1974;
van de Hulst 1980; Apresyan and Kravtsov 1996; Lagendijk and van Tiggelen 1996;
Ishimaru 1997).  It has been demonstrated, however, that the RTE can in fact be de-
rived from the electromagnetic theory of multiple wave scattering in discrete random
media under certain simplifying assumptions (Mishchenko, 2002, 2003). This deriva-
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tion has clarified the physical meaning of the quantities entering the RTE and their
relation to single-scattering solutions of the Maxwell equations.

Instead of going into the details of this derivation, we will simply summarize the
main concepts of the phenomenological radiative transfer theory, present the conven-
tional form of the RTE, and explain the meaning of the quantities appearing in this
equation.  The electromagnetic radiation field at each point r inside the scattering
medium is approximated by a collection of quasi-monochromatic beams with a con-
tinuous distribution of propagation directions n̂  and angular frequencies ω  and is
characterized by the local four-component monochromatic specific intensity column
vector
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It is assumed that the elementary beams are incoherent and make independent contri-
butions to ).,ˆ,( ωnrI   The elements ),,ˆ,( ωnrQ  ),,ˆ,( ωnrU  and ),ˆ,( ωnrV  describe
the polarization state of light propagating in the direction n̂  at the observation point
specified by the position vector r, and the monochromatic specific intensity (or radi-
ance) ),ˆ,( ωnrI  is defined such that

 dddd),ˆ,( Ωωω StI nr  (3.32)

is the amount of electromagnetic energy in an angular frequency interval )d ,( ωωω +
which is transported in a time interval td  through a surface element Sd  normal to n̂
and centered at r in directions confined to a solid angle element Ωd  centered at the
direction of propagation .n̂   All elements of the specific intensity vector have the
dimension of monochromatic radiance: energy per unit frequency interval per unit
time per unit area per unit solid angle.

In the phenomenological radiative transfer theory, a medium filled with a large num-
ber of discrete, sparsely and randomly distributed particles is treated as continuous and
locally homogeneous.  The concept of single scattering and absorption by an individual
particle is thus replaced with the concept of single scattering and absorption by a small
homogeneous volume element.  Furthermore, it is assumed that the result of scattering is
not the transformation of a plane incident wave into a spherical scattered wave but,
rather, the transformation of the specific intensity vector of the incident light into the
specific intensity vector of the scattered light:

),,ˆ,(),ˆ,ˆ,( ),ˆ,( incincscasca ωωω nrnnrnr IZI ∝

where ),ˆ,ˆ,( incsca ωnnrZ  is the phase matrix of the small volume element.
An informal way to justify this assumption is to note that the product incincsca )ˆ,ˆ( IZ nn

in Eq. (2.102) may be interpreted as the scattered polarized power per unit solid angle.
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Specifically, the polarized energy flow across a surface element S∆  normal to scan̂  at a
distance r from the particle is given by incincsca2 )ˆ,ˆ(∆ IZ nn−rS  and is, at the same time,
equal to the polarized power scattered within the solid angle element 2∆∆ −= rSΩ  cen-
tered at .ˆ scan

Another assumption in the phenomenological radiative transfer theory is that the
scattering, absorption, and emission characteristics of the small volume element follow
from the Maxwell equations and are given by the incoherent sums of the respective char-
acteristics of the constituent particles according to Eqs. (3.9), (3.10), (3.12)–(3.14), and
(3.16).

The change in the specific intensity vector along the direction of propagation n̂  in a
medium containing sparsely and randomly distributed, arbitrarily oriented particles is
described by the following classical RTE (Rozenberg 1977; Tsang et al. 1985; Mish-
chenko 2002):

),ˆ,(),ˆ,()(),ˆ,(
d
d

0 ωωω nrnrrnr IKI ��−= n
s

),ˆ,(),ˆ,ˆ,(ˆd )(
4  

0 ωω
π

nrnnrnr ′�′�′+ IZn

,]),(,ˆ,[)( e0 ��+ ωrnrr Tn K  (3.33)

where the path-length element sd  is measured along the unit vector ,n̂  )(0 rn  is the
local particle number density, and ,),ˆ,( �� ωnrK  ,),ˆ,ˆ,( �′� ωnnrZ  and

�� ]),(,ˆ,[e ωrnr TK  are the local ensemble-averaged extinction and phase matrices
and emission vector per particle, respectively.  The first term on the right-hand side of
Eq. (3.33) describes the change in the specific intensity vector over the distance sd
caused by extinction and dichroism, the second term describes the contribution of
light illuminating a small volume element centered at r from all directions n′ˆ  and
scattered into the direction ,n̂  and the third term describes the contribution of the
emitted light.

The radiative transfer equation must be supplemented by boundary conditions ap-
propriate for a given physical problem.  In particular, the boundary conditions must
correspond to the macroscopic geometry of the scattering medium and specify the
direction, polarization state, and frequency distribution of the external incident light.
For example, in the case of light scattering by the atmosphere, a standard model is a
plane-parallel particulate medium illuminated from above by a parallel beam repre-
senting solar radiation and bounded from below by a reflecting surface.  The solution
of the RTE yields the specific intensity vector of the outgoing radiation at each
boundary point and, thereby, the angular distribution and polarization state of light
multiply scattered (reflected and transmitted) by the medium.  It also provides the
specific intensity vector of the internal radiation field.  General solutions of Eq. (3.33)
have been discussed by, e.g., Mishchenko (1990a) and Haferman (2000).

Despite the approximate character of the standard radiative transfer theory, it pro-
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vides a powerful and reasonably general prescription for the treatment of the interac-
tion of light with particulate media and is accordingly applicable to a broad range of
practical situations.  However, owing to some of the basic assumptions in the devel-
opment of the classical RTE, there are circumstances for which it is not sufficient.
For example, since the classical RTE does not take full account of interference effects
it does not describe directly the so-called coherent backscattering of light (otherwise
known as weak photon localization) (Watson 1969).  To explain the physical origin of
this phenomenon, let us consider a layer composed of discrete, randomly positioned
scattering particles and illuminated by a parallel beam of light incident in the direc-
tion illn̂  (Fig. 3.3).  The distant observer measures the intensity of light reflected by
the layer in the direction .ˆ obsn   The reflected signal is composed of the contributions
made by waves scattered along various paths inside the layer involving different
combinations of particles.  Let us consider the two conjugate scattering paths shown
in Fig. 3.3 by solid and broken lines.  These paths go through the same group of N
particles, denoted by their positions ,1r ,2r …, ,Nr  but in opposite directions.  The
waves scattered along the two conjugate paths interfere, the interference being con-
structive or destructive depending on the phase difference

),ˆˆ()( obsill11 nnrr +⋅−= Nk∆   (3.34)

where 1k  is the wave number in the surrounding medium.  If the observation direc-
tion is far from the exact backscattering direction given by ,ˆ illn−  then the waves
scattered along conjugate paths involving different groups of particles interfere in
different ways, and the average effect of the interference is zero owing to the ran-
domness of particle positions.  Consequently, the observer measures some average,
incoherent intensity that is well described by the classical radiative transfer theory.
However, at exactly the backscattering direction ),ˆˆ( illobs nn −=  the phase difference
between conjugate paths involving any group of particles is identically equal to zero,
Eq. (3.34), and the interference is always constructive, thereby resulting in a coherent

Nr

1−Nr
2r

1r

illn̂illn̂obsn̂ obsn̂

…

Figure 3.3.  Schematic explanation of coherent backscattering.
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backscattering intensity peak superposed on the incoherent background (Tsang et al.
1985; Barabanenkov et al. 1991; Sheng 1995).  The scattering paths involving only
one particle do not have conjugate counterparts and do not contribute to the coherent
intensity peak.  Kuga and Ishimaru (1984) were the first to detect coherent backscat-
tering in a controlled laboratory experiment, although it may have been unknowingly
observed by Lyot (1929) in the form of the so-called coherent polarization opposition
effect (Mishchenko et al. 2000e).

An exact computation of the coherent backscattering effect based on solving the
Maxwell equations is feasible only for few-component clusters and is complicated by
several factors.  First, the scattering pattern for a monodisperse cluster in a fixed ori-
entation is always heavily burdened by multiple maxima and minima resulting from
the interference of partial waves scattered by the cluster components and by the intri-
cate resonance structure of the single-scattering contribution (Section 9.1).  Second,
the scattering pattern can be further affected by near-field effects that result from the
close proximity of the component particles.  Third, simple trigonometry shows that
the angular width of the coherent backscattering intensity peak is of the order

,21 11 ��=�� ddk πλ  where ��d  is the average distance between the cluster compo-
nents and 1λ  is the wavelength in the surrounding medium.  Therefore, the peak may
be too broad to be identified reliably unless the cluster components are widely sepa-
rated.  However, increasing the distance between the cluster components diminishes
the contribution of multiple scattering and, thus, the amplitude of the coherent back-
scattering peak, thereby making it difficult to detect.

To smooth out the effect of the first factor and make the backscattering peak de-
tectable, one must compute a scattering pattern that is averaged over particle sizes,
cluster orientations, and distances between the components.  Furthermore, the average
distance between the cluster components must be much larger than the size of the
components and the wavelength but yet small enough that the multiple-scattering
contribution to the total signal is still significant.

Ismagilov and Kravtsov (1993) studied analytically the simplest case, two widely
separated spheres with diameters much smaller than the wavelength, but found that
the amplitude of the coherent backscattering intensity peak was extremely small be-
cause of the weakness of the multiple-scattering contribution to the total scattered
signal.  Mishchenko (1996a) used the exact superposition T-matrix method (Section
5.9) to compute far-field scattering by polydisperse, randomly oriented clusters com-
posed of two equal wavelength-sized spheres with varying center-to-center distances.
He computed the ratio of the intensity scattered by the clusters to the intensity scat-
tered by two independent polydisperse spheres of the same average size, assuming
unpolarized incident light.  Figure 3.4 shows this ratio versus scattering angle (the
angle between the incidence and scattering directions) calculated for ,251 =��dk  av-
erage component sphere size parameter ,51 =��ak  and relative refractive index m =
1.2.  The curve clearly exhibits a backscattering enhancement with an angular width
comparable to ��dk11  and an amplitude of about 1.03.  Mishchenko (1996a) found
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that this feature persisted when ,1 ��dk  ,1 ��ak  and m were varied, thereby indicating
that it was indeed caused by coherent backscattering.

The amplitude of the coherent backscattering peak (the ratio of the intensity in the
center of the peak to the background value) can be significantly greater for very large
collections of particles because of the much stronger contribution of multiple scatter-
ing (van Albada and Lagendijk 1985; Wolf et al. 1988; Labeyrie et al. 2000).  For
example, the measurement results depicted in Fig. 3.5 show an amplitude of almost
1.8.  Unfortunately, the exact theory of coherent backscattering for large particle col-
lections is extremely complicated and has been developed only for the case of reflec-
tion of light by a semi-infinite layer composed of nonabsorbing particles with sizes
much smaller than the wavelength (Ozrin 1992; Amic et al. 1997).  An exact result
was obtained by Mishchenko (1992b), who used the reciprocity relation of Eq.
(2.124) to show that the photometric and polarization characteristics of coherent
backscattering at exactly the backscattering direction as well as outside the backscat-
tering peak can be expressed in terms of the solution of the classical RTE.  Other
theoretical approaches are based on the so-called diffusion approximation (Stephen
and Cwilich 1986) and the Monte Carlo technique (van Albada and Lagendijk 1987;
Martinez and Maynard 1994; Iwai et al. 1995).

Because the angular width of the intensity peak caused by coherent backscattering
from optically thick layers is proportional to the ratio of the wavelength to the photon
mean free path, it is negligibly small for sparse particle collections and does not affect
the results of remote sensing observations of such tenuous objects as clouds, aerosols,
and precipitation.  However, measurements of coherent backscattering have proved to
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Figure 3.4.  Coherent backscattering by polydisperse, randomly oriented two-sphere clusters.
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be a valuable characterization tool in laboratory and remote sensing studies of layers
composed of more closely spaced particles, such as particle suspensions and natural
and artificial particulate surfaces (e.g., Muinonen 1993; Shkuratov 1994; Mishchenko
1996b; POAN Research Group 1998; Lenke and Maret 2000).

Further reading

A detailed discussion of the concept of single scattering by a small volume element
was recently presented by Mishchenko et al. (2004a).
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Figure 3.5.  Angular profile of the coherent backscattering peak produced by a 1500-µm-thick
slab of 9.6 vol% of 0.215-µm-diameter polystyrene spheres suspended in water.  The slab was
illuminated by a linearly polarized laser beam )nm633( 1 =λ  incident normally to the slab
surface. The scattering plane (i.e., the plane through the vectors illn̂  and ,ˆ obsn  Fig. 3.3) was
fixed in such a way that the electric vector of the incident beam vibrated in this plane.  The
detector measured the component of the backscattered intensity polarized parallel to the scat-
tering plane.  The curve shows the profile of the backscattered intensity normalized by the in-
tensity of the incoherent background as a function of the phase angle.  The latter is defined as
the angle between the vectors obsn̂  and .ˆ illn−  (After van Albada et al. 1987.)
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Chapter 4

Scattering matrix and macroscopically isotropic
and mirror-symmetric scattering media

By definition, the phase matrix relates the Stokes parameters of the incident and scat-
tered beams, defined relative to their respective meridional planes.  In contrast to the
phase matrix, the scattering matrix F relates the Stokes parameters of the incident and
scattered beams defined with respect to the scattering plane, that is, the plane through
the unit vectors incn̂  and scan̂  (van de Hulst 1957).

A simple way to introduce the scattering matrix is to direct the z-axis of the refer-
ence frame along the incident beam and superpose the meridional plane with 0=ϕ
and the scattering plane (Fig. 4.1).  Then the scattering matrix F can be defined as

)( scaϑF = ).0,0;0,( incincscasca === ϕϑϕϑZ        (4.1)

In general, all 16 elements of the scattering matrix are non-zero and depend on the
particle orientation with respect to the incident and scattered beams.

The choice of laboratory reference frame, with z-axis along the incidence direction
and the xz-plane with 0≥x  coinciding with the scattering plane, can often be incon-
venient because any change in the incidence direction and/or orientation of the scat-
tering plane also changes the orientation of the scattering particle with respect to the
coordinate system.  However, we will show in this chapter that the concept of the
scattering matrix can be very useful in application to so-called macroscopically iso-
tropic and mirror-symmetric scattering media, because the scattering matrix of such a
particle collection becomes independent of incidence direction and orientation of the
scattering plane, depends only on the angle )ˆˆarccos( scainc nn ⋅=Θ  between the inci-
dence and scattering directions, and has a simple block-diagonal structure.
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4.1 Symmetries of the Stokes scattering matrix

We begin by considering special symmetry properties of the amplitude scattering
matrix that exist when both the incidence and the scattering directions lie in the xz-
plane (van de Hulst 1957).  For the particle shown schematically in Fig. 4.2(a), let
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�
�
�

�

2221

1211

SS
SS

    (4.2a)

be the amplitude scattering matrix that corresponds to the directions of incidence and
scattering given by incn̂  and ,ˆ scan  respectively (Fig. 4.1).  Rotating this particle by
180° about the bisectrix (i.e., the line in the scattering plane that bisects the angle

Θπ −  between the unit vectors incn̂−  and scan̂  in Fig. 4.1) puts it in the orientation
schematically shown in Fig. 4.2(b).  It is clear that the amplitude scattering matrix
(4.2a) is also the amplitude scattering matrix for this rotated particle when the direc-
tions of incidence and scattering are given by scan̂−  and ,ˆ incn−  respectively.  There-
fore, the reciprocity relation (2.64) implies that the amplitude scattering matrix of the
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Θ

Figure 4.1.  The xz-plane of the reference frame acts as the scattering plane.  The arrows per-
pendicular to the unit -n̂ vectors show the corresponding unit -ϑ̂ vectors.  The symbols ⊕ and
⊙ indicate the corresponding unit -ϕ̂ vectors, which are directed into and out of the paper,
respectively.
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particle shown in Fig. 4.2(b) that corresponds to the original directions of incidence
and scattering, incn̂  and ,ˆ scan is simply

.
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−
SS
SS

 (4.2b)

Mirroring the original particle, Fig. 4.2(a), with respect to the scattering plane
gives the particle shown in Fig. 4.2(c).  If we also reversed the direction of the unit
vectors incϕ̂  and scaϕ̂  in Fig. (4.1), then we would have the same scattering problem
as for the particle shown in Fig. 4.2(a).  We may thus conclude that the amplitude
scattering matrix for the particle shown in Fig. 4.2(c) that corresponds to the direc-
tions of incidence and scattering incn̂  and scan̂  is
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  (4.2c)

Finally, mirroring the original particle with respect to the bisectrix plane (i.e., the
plane through the bisectrix and the y-axis) gives the particle shown in Fig. 4.2(d).
Since this particle is simply the mirror-symmetric counterpart of the particle shown in
Fig. 4.2(b), its amplitude scattering matrix corresponding to the directions of inci-
dence and scattering incn̂  and scan̂  is
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 (4.2d)

It can be seen that any two of the three transformations shown in Figs. 4.2(b)–4.2(d)
give the third.

We will now discuss the implications of Eqs. (4.2a)–(4.2d) for Stokes scattering
matrices of collections of independently scattering particles, by considering the fol-
lowing four examples (van de Hulst 1957).

(1) Let us first assume that a small volume element contains only one kind of par-
ticle and that each particle in a specific orientation, say Fig. 4.2(a), is accompanied by
a particle in the reciprocal orientation, Fig. 4.2(b). It then follows from Eqs. (2.106)–

(a) (b) (c) (d)

Figure 4.2.  Two orientations of an arbitrary particle and two orientations of its mirror-
symmetric particle that give rise to certain symmetries in scattering patterns.  (After van de
Hulst 1957.)
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(2.121), (3.12), (4.1), (4.2a), and (4.2b) that the scattering matrix of the small volume
element has the following symmetry:

.
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   (4.3)

The number of independent matrix elements is 10.
(2) As a second example, let us assume that the volume element contains particles

and their mirror-symmetric counterparts such that for each particle in orientation (a) a
mirror-symmetric particle in orientation (c) is present (Fig. 4.2).  This excludes, for
example, scattering media composed of only right-handed or only left-handed helices.
It is easy to verify that the resulting scattering matrix involves eight independent ele-
ments and has the following structure:
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   (4.4)

(3) As a third example, consider a volume element containing particles and their
mirror-symmetric counterparts and assume that any particle in orientation (a) is ac-
companied by a mirror-symmetric particle in orientation (d), Fig. 4.2.  The scattering
matrix becomes
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    (4.5)

and has 10 independent elements.
(4) Finally, consider a volume element containing particles and their mirror-

symmetric counterparts and make any two of the preceding assumptions.  The third
assumption follows automatically, so that there are equal numbers of particles in ori-
entations (a), (b), (c), and (d). The resulting scattering matrix is
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   (4.6)

and has eight non-zero elements, of which only six are independent.
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4.2 Macroscopically isotropic and mirror-symmetric
scattering medium

Now we are ready to consider scattering by a small volume element containing ran-
domly oriented particles.  This means that there are many particles of each type and
their orientation distribution is uniform (see Eq. (3.27)).  In this case the assumptions
of example (1) from the previous section are satisfied, and the total scattering matrix
is given by Eq. (4.3).  Furthermore, if particles and their mirror-symmetric counter-
parts are present in equal numbers or each particle has a plane of symmetry, then the
assumptions of example 4 are satisfied, and the resulting scattering matrix is given by
Eq. (4.6).

As a consequence of random particle orientation, the scattering medium is macro-
scopically isotropic (i.e., there is no preferred propagation direction and no preferred
plane through the incidence direction).  Therefore, the scattering matrix becomes in-
dependent of the incidence direction and the orientation of the scattering plane and
depends only on the angle between the incidence and scattering directions, that is, the
scattering angle

),ˆˆarccos( scainc nn ⋅=Θ ].,0[ πΘ ∈

Furthermore, the assumptions of example (4) ensure that the scattering medium is
macroscopically mirror-symmetric with respect to any plane and make the structure
of the scattering matrix especially simple.  Therefore, scattering media composed of
equal numbers of randomly oriented particles and their mirror-symmetric counterparts
and/or randomly oriented particles having a plane of symmetry can be called macro-
scopically isotropic and mirror-symmetric.  Although this type of scattering medium
might be thought to be a rather special case, it nonetheless provides a very good nu-
merical description of the scattering properties of many particle collections encoun-
tered in practice and is by far the most often used theoretical model.  To emphasize
that the scattering matrix of a macroscopically isotropic and mirror-symmetric scat-
tering medium depends only on the scattering angle, we rewrite Eq. (4.6) as

,)(

)()(00
)()(00

00)()(
00)()(

)(

4434

3433

2212

1211

��=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−

= Θ

ΘΘ
ΘΘ

ΘΘ
ΘΘ

Θ FF N

FF
FF

FF
FF

   (4.7)

where N is the number of particles in the volume element and �� )(ΘF  is the ensem-
ble-averaged scattering matrix per particle.

As a direct consequence of Eqs. (3.17) and (3.18) we have the inequalities

,011 ≥F    (4.8)

.4,,1,       ,|| 11 �=≤ jiFFij    (4.9)
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Additional general inequalities for the elements of the scattering matrix (4.7) are

,4)(4)( 2
12

2
2211

2
34

2
4433 FFFFFF −+≤++  (4.10)

,|| 22114433 FFFF −≤−  (4.11)

,|| 12111222 FFFF −≤−  (4.12)

.|| 12111222 FFFF +≤+  (4.13)

The proof of these and other useful inequalities is given in Hovenier et al. (1986).

4.3 Phase matrix

Knowledge of the matrix )(ΘF  can be used to calculate the Stokes phase matrix for a
macroscopically isotropic and mirror-symmetric scattering medium.  Assume that

incsca0 ϕϕ −< π<  and consider phase matrices ),;,( incincscasca ϕϑϕϑZ  and ,( scaϑZ
).,; scaincinc ϕϑϕ   The second matrix involves the same zenith angles of the incident

and scattered beams as the first, but the azimuth angles are switched, as indicated in
their respective scattering geometries; these are shown in Figs. 4.3(a), (b).  The phase
matrix links the Stokes vectors of the incident and scattered beams, specified relative
to their respective meridional planes.  Therefore, to compute the Stokes vector of the
scattered beam with respect to its meridional plane, we must

● calculate the Stokes vector of the incident beam with respect to the scattering
plane;

● multiply it by the scattering matrix, thereby obtaining the Stokes vector of the
scattered beam with respect to the scattering plane; and finally

● compute the Stokes vector of the scattered beam with respect to its meridional
plane (Chandrasekhar 1960).

This procedure involves two rotations of the reference plane, as shown in Figs. 4.3(a),
(b), and yields

)()()( ),;,( 12
incincscasca σπΘσϕϑϕϑ −−= LFLZ

,

)()()(0
)()()()()()(
)()()()()()(

0)()()(
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12112111
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�

�

�

�
�
�
�
�

�

�

−
+−−−−

+−
=

ΘΘΘ
ΘΘΘΘΘΘ
ΘΘΘΘΘΘ

ΘΘΘ

FFCFS
FCFCCFSSFCSFSCFS
FSFSCFCSFSSFCCFC

FSFCF

 (4.14)
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Figure 4.3.  Illustration of the relationship between the phase and scattering matrices.
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)()()( ),;,( 12
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 (4.15)

where
,2 ,1      ,2sin     ,2cos === iSC iiii σσ  (4.16)

and the rotation matrix L is defined by Eq. (1.97).  (Recall that a rotation angle is
positive if the rotation is performed in the clockwise direction when one is looking in
the direction of propagation; see Section 1.5.)  The scattering angle Θ  and the angles

1σ  and 2σ  can be calculated from incscaincsca   and  ,,, ϕϕϑϑ using spherical trigo-
nometry:

),cos(sinsincoscoscos incscaincscaincsca ϕϕϑϑϑϑΘ −+=  (4.17)

,
sinsin

coscoscoscos inc

incsca

1 Θϑ
Θϑϑσ −=   (4.18)

.
sinsin

coscoscoscos sca

scainc

2 Θϑ
Θϑϑσ −=  (4.19)

Equations (4.14)–(4.19) demonstrate the obvious fact that the phase matrix of a mac-
roscopically isotropic and mirror-symmetric medium depends only on the difference
between the azimuthal angles of the scattered and incident beams rather than on their
specific values. Comparison of Eqs. (4.14) and (4.15) yields the symmetry relation
(Hovenier 1969):

,),;,( ),;,( 34
incincscasca

34
scaincincsca ∆Z∆Z ϕϑϕϑϕϑϕϑ =  (4.20)

where

.

1000
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1
34
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3434
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�
�
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�
�

�

�

−
−

=== −∆∆∆  (4.21)

It is also easy to see from either Eq. (4.14) or Eq. (4.15) that (Hovenier 1969)

,),;,( ),;,( 34
incincscasca

34
incincscasca ∆Z∆Z ϕϑϕϑϕϑπϕϑπ =−−  (4.22)

which is a manifestation of symmetry with respect to the xy-plane.  Finally, we can
verify that

,)],;,([ ),;,( 3
Tincincscasca

3
scascaincinc ∆Z∆Z ϕϑϕϑπϕϑππϕϑπ =+−+−  (4.23)
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where the matrix 3∆  is given by Eq. (2.125).  Obviously, this is the reciprocity rela-
tion (2.124).  Other symmetry relations can be derived by forming combinations of
Eqs. (4.20), (4.22), and (4.23).  For example, combining Eqs. (4.20) and (4.22) yields

).,;,( ),;,( incincscascascaincincsca ϕϑϕϑϕϑπϕϑπ ZZ =−−   (4.24)

Although Eq. (4.14) is valid only for ,0 incsca πϕϕ <−<  combining it with Eq.
(4.20) yields the phase matrix for all possible incidence and scattering directions.  The
symmetry relations (4.22) and (4.23) further reduce the range of independent scatter-
ing geometries and can be very helpful in theoretical calculations or consistency
checks on measurements.

4.4 Forward-scattering direction and extinction matrix

By virtue of spatial isotropy, the extinction matrix of a macroscopically isotropic and
mirror-symmetric medium is independent of the direction of light propagation and
orientation of the reference plane used to define the Stokes parameters.  It also fol-
lows from Eqs. (2.142)–(2.145), (3.9), and (4.2a)–(4.2d) that 13Κ = 14Κ = 23Κ = 24Κ =

31Κ = 32Κ = 41Κ = .042 =Κ  Furthermore, we are about to show that the remaining off-
diagonal elements of the extinction matrix also vanish.

We will assume for simplicity that light is incident along the positive direction of
the z-axis of the laboratory reference frame and will use the xz-plane with 0≥x  as
the meridional plane of the incident beam.  We will also assume that the initial orien-
tation of a particle is such that the particle reference frame coincides with the labora-
tory reference frame.  The forward-scattering amplitude matrix of the particle in the
initial orientation computed in the laboratory reference frame is thus equal to the for-
ward-scattering amplitude matrix computed in the particle reference frame.  We will
denote the latter as .PS   Let us now rotate the particle through an Euler angle α
about the z-axis in the clockwise direction as viewed in the positive z-direction (Figs.
2.2 and 4.4) and denote the forward-scattering amplitude matrix of this rotated parti-
cle with respect to the laboratory reference frame as .α

LS   This matrix relates the col-
umn of the electric field vector components of the incident field to that of the field
scattered in the exact forward direction:

, inc
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E

ϕ

ϑα

ϕ

ϑ S  (4.25)

where the subscript L indicates that all field components are computed in the labora-
tory reference frame.  Figure 4.4 shows the directions of the respective unit ϑ̂ - and

-ϕ̂ vectors for the incident and the forward-scattered beams.  Simple trigonometry
allows us to express the column of the electric vector components in the particle ref-
erence frame in terms of that in the laboratory reference frame by means of a trivial
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matrix multiplication (cf. Fig. 4.4):
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where αcos=C  and .sinα=S  Conversely,
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Rewriting Eq. (4.25) in the particle reference frame,
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and using Eqs. (4.26) and (4.27), we finally derive
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For 0=α  and ,2πα =
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α

scainc ˆ,ˆ
PP ϕϕ

scainc ˆ,ˆ
LL ϕϕ

scainc ˆ,ˆ
PP ϑϑ

scainc ˆ,ˆ
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Figure 4.4.  Rotation of the particle through an Euler angle α  about the z-axis transforms the
laboratory reference frame L{x, y, z} into the particle reference frame }.,,{ zyxP ′′   Since both
the incident and the scattered beams propagate in the positive z-direction, their respective unit

-ϑ̂  and -ϕ̂ vectors are the same.
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Because we are assuming random orientation of the particles in the small volume
element, for each particle in the initial orientation, ,0=α  there is always a particle of
the same type but in the orientation corresponding to .2πα =   It, therefore, follows
from Eqs. (2.141), (2.146), (3.9), (4.30), and (4.31) that 12Κ = 21Κ = 34Κ = .043 =Κ
Finally, recalling Eq. (2.159), we conclude that the extinction matrix of a small vol-
ume element containing equal numbers of randomly oriented particles and their mir-
ror-symmetric counterparts and/or randomly oriented particles having a plane of
symmetry is diagonal:

,)ˆ( extext ∆∆ΚΚ ��==≡ CNCn  (4.32)

where 
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�

=

1000
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0001

∆

is the 44×  unit matrix, N is the number of particles in the volume element, and
�� extC  is the average extinction cross section per particle, which is now independent

of the direction of propagation and polarization state of the incident light.  This sig-
nificant simplification is useful in many practical circumstances.

The scattering matrix also becomes simpler when .0=Θ  From Eqs. (2.107),
(2.110), (2.117), (2.120), (4.30), and (4.31), we find that === )0()0()0( 342112 FFF

.0)0(43 =F  Equation (4.29) gives for :4πα =

.
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Equations (2.111), (2.116), (4.30), and (4.33) and a considerable amount of algebra
yield ).0()0( 3322 FF =   Thus, recalling Eq. (4.7), we find that the forward-scattering
matrix for a macroscopically isotropic and mirror-symmetric medium is diagonal and
has only three independent elements:
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11

F
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F

F  (4.34)

(van de Hulst 1957).
Rotationally-symmetric particles are obviously mirror-symmetric with respect to

the plane through the direction of propagation and the axis of symmetry.  Choosing
this plane as the -zx ′′ plane of the particle reference frame, we see from Eq. (4.2c)
that .02112 == PP SS   This simplifies the amplitude scattering matrices (4.30) and
(4.33) and ultimately yields
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)0()0(0      ,)0()0(2)0( 1122112244 FFFFF ≤≤−=    (4.35)

(Mishchenko and Travis 1994c; Hovenier and Mackowski 1998).

4.5 Backward scattering

Equation (4.1) provides an unambiguous definition of the scattering matrix in terms
of the phase matrix, except for the exact backscattering direction.  Indeed, the back-
scattering direction for an incidence direction ),( incinc ϕϑ  is given by

).,( incinc πϕϑπ +−  Therefore, the complete definition of the scattering matrix should
be as follows:

��

�
�
�

=
∈

=
               ,for             )0,0;,(

         ),,0[for          )0,0;0,(
)(

sca

scasca
sca

πϑππ
πϑϑ

ϑ
Z
Z

F

which seems to be different from Eq. (4.1).  It is easy to see, however, that
),0,0;,()0,0;,()()0,0;0,( ππππππ ZZLZ ≡=  cf. Eq. (1.97), which demonstrates

the equivalence of the two definitions.
We are ready now to consider the case of scattering in the exact backward direc-

tion, using the complete definition of the scattering matrix and the backscattering
theorem derived in Section 2.3.  Let us assume that light is incident along the positive
z-axis of the laboratory coordinate system and is scattered in the opposite direction;
we use the xz-plane with 0≥x  as the meridional plane of the incident beam.  As in
the previous section, we consider two particle orientations relative to the laboratory
reference frame: (i) the initial orientation, when the particle reference frame coincides
with the laboratory reference frame, and (ii) the orientation obtained by rotating the
particle about the z-axis through a positive Euler angle .α  Figure 4.5 shows the re-
spective unit -ϑ̂  and -ϕ̂ vectors for the incident and the backscattered beams.  De-
note the backscattering amplitude matrix in the particle reference frame as PS  and
the backscattering amplitude matrix in the laboratory reference frame for the rotated
particle as .α

LS  A derivation similar to that in the previous section gives
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 (4.36)

This formula can be simplified, because the backscattering theorem (2.65) yields
.1221 PP SS −=   Assuming that particles are randomly oriented and considering the

cases 0=α  and ,2πα =  we find that .0)()()()( 43342112 ==== ππππ FFFF
Similarly, considering the cases 0=α  and 4πα =  yields ).()( 2233 ππ FF −=   Fi-
nally, recalling Eqs. (2.131) and (4.7), we conclude that the backscattering matrix for
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a macroscopically isotropic and mirror-symmetric medium is diagonal and has only
two independent elements:
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(Mishchenko and Hovenier 1995).  According to Eq. (4.9) ,1144 FF ≤  so we always
have

.0)(22 ≥πF  (4.38)

4.6 Scattering cross section, asymmetry parameter, and
radiation pressure

Like all other macroscopic scattering characteristics, the average scattering cross sec-
tion per particle for a macroscopically isotropic and mirror-symmetric medium is in-
dependent of the direction of illumination.  Therefore, we will evaluate the integral on
the right-hand side of Eq. (2.160) assuming that the incident light propagates along
the positive z-axis of the laboratory reference frame and that the xz-plane with 0≥x
is the meridional plane of the incident beam.  Figure 4.6 shows that in order to com-
pute the Stokes vector of the scattered beam with respect to its own meridional plane,
we must rotate the reference frame of the incident beam by the angle ,ϕ  thereby
modifying the Stokes vector of the incident light according to Eq. (1.97) with ,ϕη =
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x

y
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α

Figure 4.5.  As in Fig. 4.4, but for the case of scattering in the exact backward direction.
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and then multiply the new Stokes vector of the incident light by the scattering matrix.
Therefore, the average phase matrix per particle is simply

)()()ˆ,ˆ( incsca ϕϑ LFZ ��=�� nn
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 (4.39)

Substituting this formula in Eq. (2.160), we find that the average scattering cross sec-
tion per particle is independent of the polarization state of the incident light and is
given by

.)( sin d2 11

  

0  
sca ��=�� ϑϑϑπ

π

FC  (4.40)

The ensemble-averaged asymmetry parameter must also be independent of ,ˆ incn  and
Eqs. (2.166), (2.169), and (4.39) yield

.)( cossin d2cos 11
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π

F
C

 (4.41)

Obviously, �� Θcos  is polarization-independent.  Equations (2.176), (4.39), and
(4.41) show that the average radiation force per particle is now directed along :ˆ incn

y

x

z

scan̂

incn̂

ϑ

ϕ

Figure 4.6.  Illustration of the relationship between the phase and scattering matrices when the
incident light propagates along the positive z-axis.
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where

����−��=�� Θcosscaextpr CCC  (4.43)

is the polarization- and direction-independent average radiation-pressure cross section
per particle.  The average absorption cross section per particle,

,scaextabs ��−��=�� CCC  (4.44)

and the average single-scattering albedo,

,
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are also independent of the direction and polarization of the incident beam.  The
same, of course, is true of the extinction, scattering, absorption, and radiation pressure
efficiency factors, defined as
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respectively, where ��G  is the average projection area per particle.

4.7 Thermal emission

Because the ensemble-averaged emission vector for a macroscopically isotropic and
mirror-symmetric medium must be independent of the emission direction, we will
calculate the integral on the right-hand side of Eq. (2.186) for light emitted in the
positive direction of the z-axis and will use the meridional plane 0=ϕ  as the refer-
ence plane for defining the emission Stokes vector.  It is then obvious from Fig. 4.7
that the corresponding average phase matrix per particle can be calculated as

�′�′−=�′� )()()ˆ,ˆ( ϑϕ FLZ nn

.

)()(00
2cos)(2cos)(2sin)(2sin)(
2sin)(2sin)(2cos)(2cos)(

00)()(

4434

34332212

34332212

1211

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�′��′�−

′�′�′�′�′�′�−′�′�−

′�′�′�′�′�′�′�′�

�′��′�

=

ϑϑ
ϕϑϕϑϕϑϕϑ
ϕϑϕϑϕϑϕϑ

ϑϑ

FF
FFFF
FFFF

FF

 (4.47)

Inserting this formula and Eqs. (4.32) and (4.40) in Eq. (2.186) yields



Scattering, Absorption, and Emission of Light by Small Particles98

),,(),(),,ˆ( babsee ωωω TCTT IΚΚ ��=��≡�� n   (4.48)

where �� absC  may depend on frequency and ),(b ωTI  is the blackbody Stokes vector
defined by Eq. (2.184).  Thus, the radiation emitted by a small volume element com-
prising equal numbers of randomly oriented particles and their mirror-symmetric
counterparts and/or randomly oriented particles having a plane of symmetry is not
only isotropic but also unpolarized.  The first (and the only non-zero) element of the
average emission vector per particle is simply equal to the product of the average ab-
sorption cross section and the Planck function.  Substituting Eq. (4.48) in Eq. (2.187),
we see that the emission component of the average radiation force exerted on particles
forming a macroscopically isotropic and mirror-symmetric medium is identically
equal to zero:

.0)(e ≡�� TF

4.8 Spherically symmetric particles

The structure of the scattering matrix simplifies further for spherically symmetric
particles, that is, for homogeneous or radially inhomogeneous spherical bodies com-
posed of optically isotropic materials.  The refractive index inside such particles is a
function of only the distance from the particle center.  Irrespective of their “orienta-
tion” relative to the laboratory reference frame, spherically symmetric particles are
obviously mirror-symmetric with respect to the xz-plane. Directing the incident light

y

x

z

n̂

n̂

ϑ

ϕ

′

′

′

Figure 4.7.  Illustration of the relationship between the phase and scattering matrices when the
scattered light propagates along the positive z-axis.
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along the positive z-axis, restricting the scattering direction to the xz-plane with
,0≥x  and using this plane for reference, we find from Eqs. (4.2a) and (4.2c) that the

amplitude scattering matrix is always diagonal ).0( 2112 == SS  Therefore, Eqs.
(2.106), (2.111), (2.116), (2.121), and (4.7) yield

.
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Θ

FF
FF

FF
FF

F  (4.49)

A scattering matrix of this type appears in the standard Lorenz–Mie theory of light
scattering by homogeneous isotropic spheres; therefore, the above matrix will be re-
ferred to as the Lorenz–Mie scattering matrix.  The results of the previous sections on
forward and backward scattering imply that

).()(     and     )0()0( 11331133 ππ FFFF −==  (4.50)

4.9 Effects of nonsphericity and orientation

The previous discussion of symmetries enables us to summarize the most fundamental
effects of particle nonsphericity and orientation on single-scattering patterns.  If particles
are not spherically symmetric and do not form a macroscopically isotropic and mirror-
symmetric medium, then, in general,

● the 44×  extinction matrix does not degenerate to a direction- and polarization-
independent scalar extinction cross section;

● the extinction, scattering, absorption, and radiation-pressure cross sections, the
single-scattering albedo, and the asymmetry parameter depend on the direction
and polarization state of the incident beam;

● all four elements of the emission vector are non-zero and orientation dependent;
● the direction of the radiation force does not coincide with the direction of inci-

dence, and the emission component of the radiation force is non-zero;
● the scattering matrix F does not have the simple block-diagonal structure of Eq.

(4.7): all 16 elements of the scattering matrix can be non-zero and depend on the
incidence direction and the orientation of the scattering plane rather than only on
the scattering angle;

● the phase matrix depends on the specific values of the azimuthal angles of the
incidence and scattering directions rather than on their difference, it cannot be
represented in the form of Eqs. (4.14) and (4.15), and it does not obey the sym-
metry relations (4.20) and (4.22).

Any of these effects can directly indicate the presence of oriented particles lacking
spherical symmetry.  For example, measurements of interstellar polarization are used in
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astrophysics to detect preferentially oriented dust grains causing different values of ex-
tinction for different polarization components of the transmitted starlight (Martin 1978).
Similarly, the depolarization of radiowave signals propagating through the Earth’s at-
mosphere may indicate the presence of partially aligned nonspherical hydrometeors
(Oguchi 1983).

If nonspherical particles are randomly oriented and form a macroscopically iso-
tropic and mirror-symmetric scattering medium, then

● the extinction matrix reduces to the scalar extinction cross section, Eq. (4.32);
● all optical cross sections, the single-scattering albedo, and the asymmetry pa-

rameter become orientation and polarization independent;
● the emitted radiation becomes isotropic and unpolarized;
● the radiation force is directed along the incident beam, and the emission com-

ponent of the radiation force vanishes;
● the phase matrix depends only on the difference between the azimuthal angles

of the incidence and scattering directions rather than on their specific values,
has the structure specified by Eqs. (4.14) and (4.15),  and obeys the symmetry
relations (4.20) and (4.22);

● the scattering matrix becomes block-diagonal (Eq. (4.7)), depends only on the
scattering angle, and possesses almost the same structure as the Lorenz–Mie
scattering matrix (4.49).

However, the remaining key point is that the Lorenz–Mie identities )()( 1122 ΘΘ FF ≡
and  )()( 3344 ΘΘ FF ≡  do not hold, in general, for nonspherical particles.  This differ-
ence makes measurements of the linear backscattering depolarization ratio =Lδ

)]()([)]()([ 22112211 ππππ FFFF +−  and the closely related circular backscattering
depolarization ratio Cδ  the most reliable indicators of particle nonsphericity (Sections
10.2 and 10.11).  Besides this qualitative distinction, which unequivocally distin-
guishes randomly oriented nonspherical particles from spheres, there can be signifi-
cant quantitative differences in specific scattering patterns.  They will be discussed in
detail in the following chapters.

4.10 Normalized scattering and phase matrices

It is convenient and customary in many types of applications to use the so-called
normalized scattering matrix

,
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FFF  (4.51)

the elements of which are dimensionless.  Similarly, the normalized phase matrix can
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be defined as

),;,(4 ),;,(
~ incincscasca

sca

incincscasca ϕϑϕϑπϕϑϕϑ ZZ
C

=

.),;,(4 incincscasca

sca
��

��
= ϕϑϕϑπ Z

C
 (4.52)

The (1,1) element of the normalized scattering matrix, ),(1 Θa  is traditionally called
the phase function and, as follows from Eqs. (4.40) and (4.51), satisfies the normali-
zation condition:

.1)( sin d
2
1

1

  

0  
=ΘΘΘ

π

a  (4.53)

Remember that we have already used the term “phase function” to name the quantity
p defined by Eq. (2.167).  It can be easily seen from Eqs. (2.166), (2.167), (4.1), and
(4.51) that the differential scattering cross section Ωdd scaC  reduces to ,11��F  and so
p reduces to ,1a  when unpolarized incident light propagates along the positive z-axis
and is scattered in the xz-plane with .0≥x   Equations (4.41) and (4.51) yield

.cos)(sind
2
1cos 1

  

0  
ΘΘΘΘΘ

π

a=��    (4.54)

The normalized scattering matrix possesses many properties of the regular scattering
matrix, e.g.,

,01 ≥a  (4.55)

,2 ,1     ,||         ,4 ,3 ,2     ,|| 11 =≤=≤ iabiaa ii  (4.56)
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,|| 1112 baba −≤−  (4.59)

,|| 1112 baba +≤+  (4.60)
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.0)(        ),(2)()( 2214 ≥−= ππππ aaaa  (4.63)
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Also,

)0()0(0       ,)0()0(2)0( 12124 aaaaa ≤≤−=  (4.64)

for rotationally symmetric particles and
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)()(      ),0()0( 1313 ππ aaaa −==  (4.66)

for spherically symmetric particles. Similarly, for πϕϕ <−< incsca0  the normalized
phase matrix is given by
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(cf. Eq. (4.14)) and has the same symmetry properties as the regular phase matrix:

,),;,(~ ),;,(~
34

incincscasca
34

scaincincsca ∆Z∆Z ϕϑϕϑϕϑϕϑ =    (4.68)

,),;,(~ ),;,(~
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34

incincscasca ∆Z∆Z ϕϑϕϑϕϑπϕϑπ =−−     (4.69)

.)],;,(~[ ),;,(~
3

Tincincscasca
3

scascaincinc ∆Z∆Z ϕϑϕϑπϕϑππϕϑπ =+−+−   (4.70)

An important difference between the regular and normalized matrices is that the
latter do not possess the property of additivity.  Consider, for example, a small vol-
ume element containing 1N  particles of type 1 and 2N  particles of type 2.  The total
phase and scattering matrices of the volume element are obtained by adding the phase
and scattering matrices of all particles,

,2211 ��+��= ZZZ NN   (4.71)

,2211 ��+��= FFF NN  (4.72)

whereas the respective normalized matrices are given by more complicated relations,
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~~~

CNCN
CNCN FFF  (4.74)
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(see Eqs. (4.51) and (4.52)).

4.11 Expansion in generalized spherical functions

A traditional way of specifying the elements of the normalized scattering matrix is to
tabulate their numerical values at a representative grid of scattering angles (Deir-
mendjian 1969). However, a more mathematically appealing and efficient way is to
expand the scattering matrix elements in so-called generalized spherical functions

)(cosΘs
mnP  or, equivalently, in Wigner functions )(cosi)( ΘΘ s

mn
mns

mn Pd −=  (Siewert
1981; de Haan et al. 1987):
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The number of non-zero terms in the expansions (4.75)–(4.80) is in principle infinite.
In practice, however, the expansions are truncated at ,maxss =  maxs  being chosen
such that the corresponding finite sums differ from the respective scattering matrix
elements on the entire interval ],0[ πΘ ∈  of scattering angles within the desired nu-
merical accuracy.

The properties of the generalized spherical functions and the Wigner d-functions
are summarized in Appendix B.  For given m and n, either type of function with

|),||,max(| nms ≥  when multiplied by ,2
1+s  forms a complete orthonormal set of

functions of ]1,1[cos +−∈Θ  (see Eqs. (B.17) and (B.33)).  Therefore, using the or-
thogonality relation (B.17), we obtain from Eqs. (4.75)–(4.80)
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(cf. Eq. (B.21)).  These formulas suggest a simple, albeit not always the most elegant
and efficient, way to compute the expansion coefficients by evaluating the integrals
numerically using a suitable quadrature formula (de Rooij and van der Stap 1984).  Of
course, this procedure assumes the knowledge of the scattering matrix elements at the
quadrature division points. The expansions (4.75)–(4.80) converge (in the sense of
Eqs. (B.34)–(B.37) or Eqs. (B.18)–(B.21)) to the respective elements of the normal-
ized scattering matrix if these elements are square integrable on the interval

].,0[ πΘ ∈   In view of the general inequality (4.56), it is sufficient to require that the
phase function )(1 Θa  be square integrable to ensure such convergence.

Because the Wigner d-functions possess well-known and convenient mathematical
properties and can be efficiently computed by using a simple and numerically stable
recurrence relation, expansions (4.75)–(4.80) offer several practical advantages.  First,
we note that according to Eqs. (B.6)–(B.7),

0)0()0( 022,2 ==−
ss dd  (4.87)

and

.0)()( 0222 == ππ ss dd  (4.88)

Therefore, Eqs. (4.76), (4.77), (4.79), and (4.80) reproduce identically the specific
structure of the normalized scattering matrix for the exact forward and backward di-
rections, Eqs. (4.61) and (4.62) (cf. Domke 1974).  Second, when the expansion coef-
ficients appearing in these expansions are known, then the elements of the normalized
scattering matrix can be calculated easily for practically any number of scattering angles
and with a minimal expenditure of computer time.  Thus, instead of tabulating the ele-
ments of the scattering matrix for a large number of scattering angles (cf. Deirmendjian
1969) and resorting to interpolation in order to find the scattering matrix at intermediate
points, one can provide a complete and accurate specification of the scattering matrix by
tabulating a limited (and usually small) number of numerically significant expansion
coefficients.  This also explains why the expansion coefficients are especially convenient
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in ensemble averaging: instead of computing ensemble-averaged scattering matrix ele-
ments, one can average a (much) smaller number of expansion coefficients.

An additional advantage of expanding the scattering matrix elements in generalized
spherical functions is that the latter obey an addition theorem and thereby provide an
elegant analytical way of calculating the coefficients in a Fourier decomposition of the
normalized phase matrix (Kuščer and Ribarič 1959; Domke 1974; de Haan et al.
1987).  This Fourier decomposition is then used to handle the azimuthal dependence of
the solution of the vector radiative transfer equation efficiently.  Another important ad-
vantage offered by expansions (4.75)–(4.80) is that the expansion coefficients for certain
types of nonspherical particle can be calculated analytically without computing the scat-
tering matrix itself (Section 5.5).

The expansion coefficients obey the general inequalities

,4 ,3 ,2 ,1     ,12|| =+≤ jss
jα  (4.89)

.2 ,1     ,2)12(|| =+< jss
jβ  (4.90)

These and other useful inequalities were derived by van der Mee and Hovenier
(1990). Since, for each s, )(00 Θsd  is a Legendre polynomial ),(cosΘsP  Eq. (4.75) is
also the well-known expansion of the phase function in Legendre polynomials
(Chandrasekhar 1960; Sobolev 1975; van de Hulst 1980).  Equation (B.12) gives

.1)(0
00 ≡Θd   Therefore, Eq. (4.81) and the normalization condition (4.53) yield the

identity

.1 0
1 ≡α  (4.91)

Similarly, the average asymmetry parameter, Eq. (4.54), can be expressed as

.
3

cos
1
1αΘ =��  (4.92)

4.12 Circular-polarization representation

Equations (4.75)–(4.80) become more compact and their origin becomes more trans-
parent if one uses the circular-polarization representation of the Stokes vector (Kuščer
and Ribarič 1959; Domke 1974; Hovenier and van der Mee 1983).  We begin by de-
fining the circular components of a transverse electromagnetic wave as
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Using Eqs. (2.30) and (4.94), we find that the corresponding circular-polarization
amplitude scattering matrix C is expressed in terms of the regular amplitude scatter-
ing matrix as
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where the arguments )ˆ,ˆ( incsca nn  are omitted for brevity and
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The usefulness of the circular electric vector components becomes clear from the
simple formulas
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which follow, after some algebra, from
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and Eqs. (1.54) and (1.60). It is easy to verify using the first equality of Eq. (4.95) and
Eqs. (4.96) that the circular-polarization phase matrix is given by
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Alternatively, it can be found from Eq. (2.123).
Consider now scattering by a macroscopically isotropic and mirror-symmetric

medium. The normalized scattering and phase matrices in the circular-polarization
representation are defined by analogy with the matrices F~  and :

~Z

,)0,0;0,(4 )(~ incincscascaCP
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CP �====�
��

= ϕϑϕΘϑπΘ ZF
C

 (4.98)
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,),;,(4 ),;,(
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 (4.99)

where �� ),;,( incincscascaCP ϕϑϕϑZ  is the average circular-polarization phase matrix
per particle. From Eqs. (2.123), (4.51), (1.62), and (1.66) we have
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Obviously, this matrix has several symmetry properties:
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An elegant and compact way to expand the elements CP~
pqF  is to use generalized

spherical functions :s
pqP
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which indicates the rationale for the specific choice of values for the p, q indices for
the circular-polarization phase matrix and the corresponding Stokes vector component
subscripts (Eq. (4.96)).  Another justification for this choice of expansion functions
comes from the consideration of certain properties of the rotation group (Domke
1974).  The expression for the expansion coefficients s

pqg  follows from Eqs. (4.104)

and (B.37):
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Note that for )(cosΘs
pqP  no distinction is made between 0, =qp  and .0 , −=qp  For

the values of p and q used here, all functions )(cosΘs
pqP  are real-valued (see Eq.

(B.30)).  Using Eqs. (4.101)–(4.103), (4.105), and (B.31), we derive the following
symmetry relations:
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.)( 0,220
∗

−= ss gg      (4.108)

Finally, inserting Eq. (4.104) into Eq. (4.100) yields expansions (4.75)–(4.80) with
expansion coefficients
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,2,2222
sss gg −+=α      (4.110)

,2,2223
sss gg −−=α      (4.111)

,0,0004
sss gg −−=α      (4.112)

,Re2 021
ss g=β      (4.113)
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By analogy with Eq. (4.14) and using Eqs. (1.101) and (4.100), we find for <0
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where we have omitted the argument Θ  in the a’s and b’s.  Applying Eq. (2.123) to
Eqs. (4.68)–(4.70) we derive, after some algebra, the supplementary symmetry rela-
tions
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4.13 Radiative transfer equation

For macroscopically isotropic and mirror-symmetric media, the radiative transfer
equation can be significantly simplified:
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where

sCn d),()(),(d ext0 ��= ωωτ rrr      (4.121)

is the optical pathlength element (cf. Eqs. (3.33), (4.32), (4.44), (4.45), (4.48), and
(4.52)).  By writing the normalized phase matrix in the form ),;,,;(

~
ωϕϕϑϑ ′−′rZ  we

explicitly indicate that it depends on the difference of the azimuthal angles of the scat-
tering and incident directions rather than on their specific values (Section 4.3).  This im-
portant property enables an efficient analytical treatment of the azimuthal dependence of
the multiply scattered light, using a Fourier decomposition of the radiative transfer equa-
tion (Kuščer and Ribarič 1959; Domke 1974; de Haan et al. 1987).  Numerical meth-
ods for solving Eq. (4.120) for the plane-parallel geometry are reviewed by Hansen and
Travis (1974).

Equation (4.120) can be further simplified by neglecting polarization and so replacing
the specific intensity vector by its first element (i.e., the radiance) and the normalized
phase matrix by its (1, 1) element (i.e., the phase function):
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where

)cos(sin sincos coscos ϕϕϑϑϑϑΘ ′−′+′=      (4.123)

(see Eqs. (2.184), (4.17), and (4.67)).  Although ignoring the vector nature of light and
replacing the exact vector radiative transfer equation by its approximate scalar counter-
part has no rigorous physical justification, this simplification is widely used when the
medium is illuminated by unpolarized light and only the intensity of multiply scattered
light needs to be computed.  The scalar approximation gives poor accuracy when the size
of the scattering particles is much smaller than the wavelength (Chandrasekhar 1960;
Mishchenko et al. 1994), but provides acceptable results for particles comparable to and
larger than the wavelength (Hansen 1971).  Analytical and numerical solutions of the
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scalar radiative transfer equation are discussed by Sobolev (1975), van de Hulst (1980),
Lenoble (1985), Yanovitskij (1997), and Thomas and Stamnes (1999).



Part II

Calculation and Measurement of Scattering and
Absorption Characteristics of Small Particles
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The scattering, absorption, and emission characteristics introduced in Part I are intimately
related to the physical and geometrical parameters of particles such as size, shape, rela-
tive refractive index, and orientation.  Therefore, understanding natural optical phenom-
ena and developing remote sensing and laboratory techniques for particle characteriza-
tion require accurate quantitative knowledge of the electromagnetic scattering interaction
as a function of the particle parameters.

Electromagnetic scattering properties of small particles can be either computed theo-
retically or measured experimentally, both approaches having their strengths, weak-
nesses, and limitations. Theoretical modeling does not involve expensive instrumenta-
tion, can be used to find any scattering characteristic, and often allows switching to an-
other particle shape, size, refractive index, or orientation by changing a few lines in a
computer code.  However, applying exact methods to realistic polydispersions of irregu-
lar particles can be very costly, and sometimes not even possible, and often must be re-
placed by computations for simplified model shapes. Approximate techniques can be
more flexible, but often have poorly characterized accuracy and range of applicability.

Laboratory and field measurements employing visible or infrared light can deal with
real small particles, either natural or artificial.  However, such measurements require
complex and expensive hardware, are often incapable of providing simultaneously and
accurately all scattering characteristics, and may be difficult to interpret because of lack
of independent information on sample microphysics and composition.  The microwave
analog technique allows a much greater degree of independent sample characterization
and enables true controlled laboratory measurements, but it involves even costlier
equipment and cannot be applied readily to realistic distributions of particle sizes, shapes,
and orientations.  It is thus clear that only a creative combination of various theoretical
and experimental approaches can lead to a significantly improved knowledge of light
scattering by small particles.

All exact techniques for calculating electromagnetic scattering are based on solving
the differential Maxwell equations or their integral counterparts in the time or frequency
domain, either analytically or numerically.  The search for an analytical solution has been
equated, traditionally, to solving the vector wave equations for the time-harmonic electric
fields outside and inside the scatterer (Eqs. (2.3) and (2.4)) using the separation of vari-
ables technique in one of the few coordinate systems in which this type of equation is
separable (Morse and Feshbach 1953).  The incident and internal fields are expanded in
wave functions that are regular inside the scatterer, whereas the external scattered field is
expanded in wave functions that behave as outgoing waves at infinity.  These expansions
are double series in general; a reduction to single series occurs only for spheres and infi-
nite cylinders.  Subject to the requirement of continuity of the tangential component of
the electric and magnetic fields at the particle boundary (Eqs. (1.13) and (1.15)), the un-
known coefficients in the internal-field and scattered-field expansions are determined
from the known expansion coefficients of the incident field.

Unfortunately, the separation of variables technique generates a manageable solution
only in a few simple cases.  Lorenz in 1890 and, independently, Love (1899), Mie
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(1908), and Debye (1909) derived the solution for an isotropic homogeneous sphere (see
the historical remarks in Section 3.4 of Kerker 1969).  We will refer to this solution as
the Lorenz–Mie theory.  This approach was extended to concentric core-mantle spheres
(Aden and Kerker 1951), concentric multilayered spheres (Wait 1963), and radially in-
homogeneous spheres (Wyatt 1962).  Wait (1955) gave a full solution for electromag-
netic scattering by a homogeneous infinite circular cylinder, whereas Kim and Yeh
(1991) solved the general problem for an infinite elliptical cylinder.  Finally, Oguchi
(1973), Asano and Yamamoto (1975), and Onaka (1980) derived a general solution for
homogeneous and core-mantle spheroids.

It is unlikely that this list of exact analytical results will be extended significantly in
the future. Indeed, the separation of variables solution for spheroids, perhaps the simplest
finite nonspherical particle, is already so complex that it behaves like a numerical solu-
tion in many respects and offers no definitive practical advantage over other available
approaches.  Some exact numerical approaches, in turn, often behave like analytical so-
lutions since they involve the expansion of the incident and scattered fields in complete
sets of eigenfunctions with well-known and convenient mathematical properties.  As a
consequence, the formerly rigid distinction between exact analytical and numerical solu-
tions for nonspherical particles has become semantic rather than practical.

In Part II of this book we describe several theoretical and experimental techniques
that have found extensive practical usage.  We begin with a chapter on the T-matrix
method because this is one of the most efficient, accurate, and widely employed exact
techniques for simple and aggregated particles, includes the Lorenz–Mie theory as a
particular case, and has remarkable analytical ties with the formalism outlined in Sec-
tions 4.10–4.12.  In Chapters 6 and 7 we describe several alternative exact techniques
and approximations and compare their relative performance and ranges of applicabil-
ity.  The closing chapter of Part II is devoted to experimental techniques employing
visible, infrared, or microwave wavelengths.
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Chapter 5

T-matrix method and Lorenz–Mie theory

The T-matrix method was initially introduced by Waterman (1965, 1971) as a technique
for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped
particles based on the Huygens principle (this technique is otherwise known as the ex-
tended boundary condition method, the Schelkunoff equivalent current method, the
Ewald–Oseen extinction theorem, and the null-field method).  However, the concept,
perceived at the time as auxiliary, of expanding the incident and scattered waves in ap-
propriate vector spherical wave functions and relating these expansions by means of a
transition (or T) matrix has proved to be extremely powerful by itself and has dramati-
cally expanded the realm of the T-matrix approach.  The latter now includes electromag-
netic, acoustic, and elastodynamic wave scattering by single and aggregated scatterers,
multiple scattering in discrete random media, and scattering by gratings and periodically
rough surfaces (Varadan and Varadan 1980; Tsang et al. 1985).  An attractive feature of
the T-matrix approach is that it reduces exactly to the Lorenz–Mie theory when the scat-
tering particle is a homogeneous or layered sphere composed of isotropic materials.  The
analyticity of the T-matrix formulation reveals close mathematical ties with the formal-
ism of expanding normalized scattering matrices in generalized spherical functions (Sec-
tions 4.11 and 4.12) and has led to the development of efficient techniques for calculating
orientation-averaged scattering characteristics.

At present, the T-matrix approach is one of the most powerful and widely used tools
for rigorously computing electromagnetic scattering by single and compounded particles.
In many applications it surpasses other frequently used techniques in terms of efficiency
and size parameter range and is the only method that has been used in systematic surveys
of nonspherical scattering based on calculations for thousands of particles in random
orientation.  Recent improvements have made this method applicable to particles much
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larger than a wavelength and, therefore, suitable for checking the accuracy of the geomet-
rical optics approximation and its modifications at lower frequencies (Section 7.4).  Be-
cause of its high and readily controllable numerical accuracy, the T-matrix method is one
of a very few sources of benchmark results for particles lacking spherical symmetry.
Hence it appears natural to open Part II by a detailed survey of the T-matrix approach.

5.1 T-matrix ansatz

Consider scattering of a plane electromagnetic wave

,0ˆ          ,e)( incinc
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ˆiinc
0

inc inc
1 =⋅= ⋅ nEErE rnk    (5.1)

by an arbitrary finite scattering object in the form of a single particle or a fixed aggre-
gate, as described in Chapter 2.  We expand the incident and scattered fields in vector
spherical wave functions as follows:
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where 1k  is the wave number in the surrounding medium and >r  is the radius of the
smallest circumscribing sphere of the scatterer centered at the origin of the laboratory
coordinate system (Fig. 5.1).  The properties of the vector spherical wave functions
are summarized in Appendix C. The functions mnMRg  and mnNRg  are regular (fi-
nite) at the origin, while the use of the outgoing functions mnM  and mnN  in Eq. (5.3)
ensures that the scattered field satisfies the so-called radiation condition at infinity
(i.e., the transverse component of the scattered electric field decays as ,1 r  whereas

>  r

Figure 5.1.  Cross section of an arbitrarily shaped, finite scattering object. >r  is the radius of
the smallest circumscribing sphere centered at the origin of the laboratory coordinate system.
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the radial component decays faster than r1  with ;∞→r  see Section 2.2 and Eqs.
(C.30) and (C.31)).  The requirement >> rr  in Eq. (5.3) means that the scattered
field is expanded in the functions mnM  and mnN  only outside the smallest circum-
scribing sphere of the scatterer (Fig. 5.1).  The so-called Rayleigh hypothesis (e.g.,
Bates 1975; Paulick 1990) conjectures that the scattered field can be expanded in the
outgoing wave functions not only in the outside region but also in the region between
the particle surface and the smallest circumscribing sphere.  Because the range of
validity of this hypothesis is poorly known and is in fact questionable, the require-
ment >> rr  in Eq. (5.3) is important in order to make sure that the Rayleigh hy-
pothesis is not implicitly invoked (Lewin 1970).

The expansion coefficients of the plane incident wave are given by Eqs. (C.57)
and (C.58):
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Owing to the linearity of the Maxwell equations and constitutive relations (see Sec-
tion 2.2), the relation between the scattered-field expansion coefficients mnp  and mnq
on the one hand and the incident field expansion coefficients mna  and mnb  on the
other hand must be linear and is given by the so-called transition matrix (or T matrix)
T as follows (Waterman 1971; Tsang et al. 1985):
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In compact matrix notation, Eqs. (5.6) and (5.7) can be rewritten as
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which means that the column vector of the expansion coefficients of the scattered
field is obtained by multiplying the T matrix and the column vector of the expansion
coefficients of the incident field.

Equation (5.8) is the cornerstone of the T-matrix approach. Indeed, if the T matrix
is known, then Eqs. (5.6), (5.7), (5.4), (5.5), and (5.3) give the scattered field and,
thus, the scattering dyad defined by Eq. (2.26).  Indeed, substituting the asymptotic
formulas (C.30) and (C.31) in Eq. (5.3) yields Eq. (2.24) with
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Finally, using Eqs. (5.4)–(5.7), we easily derive
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Equations (2.31)–(2.34) and (5.10) then yield the amplitude matrix elements as fol-
lows:

)()([1)ˆ,ˆ( incsca11

111

incsca
11 ϑπϑπα nmmnnmmnnmmn

n

nm

n

nmnn

T
k

S ′′′′′′

′

′−=′−=

∞

=′

∞

=

=nn

)()()()( incsca12incsca21 ϑτϑπϑπϑτ nmmnnmmnnmmnnmmn TT ′′′′′′′′ ++

,)]i(exp[)]()( incscaincsca22 ϕϕϑτϑτ mmT nmmnnmmn ′−+ ′′′′  (5.11)

)()([
i
1)ˆ,ˆ( incsca11

111

incsca
12 ϑτϑπα nmmnnmmnnmmn

n

nm

n

nmnn

T
k

S ′′′′′′

′

′−=′−=

∞

=′

∞

=

=nn

)()()()( incsca12incsca21 ϑπϑπϑτϑτ nmmnnmmnnmmnnmmn TT ′′′′′′′′ ++

,)]i(exp[)]()( incscaincsca22 ϕϕϑπϑτ mmT nmmnnmmn ′−+ ′′′′  (5.12)

)()([i)ˆ,ˆ( incsca11

111

incsca
21 ϑπϑτα nmmnnmmnnmmn

n

nm

n

nmnn

T
k

S ′′′′′′

′

′−=′−=

∞

=′

∞

=

=nn

)()()()( incsca12incsca21 ϑτϑτϑπϑπ nmmnnmmnnmmnnmmn TT ′′′′′′′′ ++

,)]i(exp[)]()( incscaincsca22 ϕϕϑτϑπ mmT nmmnnmmn ′−+ ′′′′  (5.13)

)()([1)ˆ,ˆ( incsca11

111

incsca
22 ϑτϑτα nmmnnmmnnmmn

n

nm

n

nmnn

T
k

S ′′′′′′

′

′−=′−=

∞

=′

∞

=

=nn

)()()()( incsca12incsca21 ϑπϑτϑτϑπ nmmnnmmnnmmnnmmn TT ′′′′′′′′ ++

,)]i(exp[)]()( incscaincsca22 ϕϕϑπϑπ mmT nmmnnmmn ′−+ ′′′′  (5.14)
where

,
)1()1(
)12)(12()1(i

2/1
1

�
�

�
�
�

�

+′′+
+′+−= ′+−−′

′′ nnnn
nnmmnn

nmmnα  (5.15)

),()1()(        ,
sin

)()( 10 ϑπϑπ
ϑ
ϑϑπ mn

m
mn

n
m

mn
md +

− −==  (5.16)

)()1()(       , 
d

)(d)( 0 ϑτϑτ
ϑ

ϑϑτ mn
m

mn

n
m

mn
d −== −  (5.17)

(see Eq. (B.5)).  Knowledge of the amplitude matrix allows one to compute any of the
scattering characteristics introduced in Chapter 2.  Specifically, the Stokes phase and
extinction matrices and the extinction cross section are given by Eqs. (2.106)–(2.121),
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Eqs. (2.140)–(2.146), and Eq. (2.159), respectively.  Alternatively, Eqs. (2.157), (5.9),
(5.4) and (5.5) yield
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The formula for the scattering cross section follows from Eqs. (2.158) and (5.9) and
the orthogonality and normalization conditions for the vector spherical harmonics,
Eqs. (C.51) and (C.52):
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A fundamental feature of the T-matrix approach is that the T matrix depends only
on the physical and geometrical characteristics of the scattering particle (such as par-
ticle size relative to the wavelength, shape (morphology), relative refractive index,
and orientation with respect to the laboratory reference frame; see subsection 5.8.2
below) and is completely independent of the propagation directions and polarization
states of the incident and scattered fields.  This means that the T matrix need be com-
puted only once and then can be used in calculations for any direction of incidence
and scattering and for any polarization state of the incident field.

5.2 General properties of the T matrix

The special functions appearing in the T-matrix formulation have been studied thor-
oughly and result in convenient mathematical properties and symmetries of the T ma-
trix.  In this and later sections we will demonstrate how the analyticity of the T-matrix
approach can be exploited in order to enhance significantly the efficiency of compu-
tations for individual scatterers as well as for particle ensembles.

5.2.1 Rotation transformation rule

We begin by deriving the rotation transformation rule for the T matrix. Consider labo-
ratory (L) and particle (P) coordinate systems having a common origin inside the
scattering object.  Let ,α  ,β  and γ  be the Euler angles of rotation transforming the
laboratory coordinate system into the particle coordinate system (cf. Section 2.4), and
let ),( LL ϕϑ  and ),( PP ϕϑ  be the spherical angles of the same position vector r in the
two coordinate systems, respectively.  We now rewrite Eqs. (5.2) and (5.3) as follows:
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According to Eqs. (C.64) and (C.65), we can use Wigner D-functions to write
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and similarly for RgM, N, and RgN.  Therefore, we immediately get
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Note that in Eqs. (5.25) and (5.26) we use a compact way of writing two formulas (for
mna  and mnb  and for mnp  and )mnq  as a single equation.  Finally, from
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and Eqs. (5.25) and (5.26), we derive (Tsang et al. 1985)

),,,()(),,(),,;(
2211

21

αβγγβαγβα −−−= ′
′′

′

′−=−=

′′
n

mm
kl

nnmm
n
mm

n

nm

n

nm

kl
nmmn DPTDLT

2.1,, =lk   (5.29)

When ,0=== γβα  Eq. (5.29) must give

).( )0,0,0;( PTLT kl
nmmn

kl
nmmn ′′′′ ≡   (5.30)

It is easy to verify that this identity indeed follows from Eqs. (B.38) and (B.6).
If we now assume that the matrix )(PT  is already known and use the Euler angles

of rotation ,α  ,β  and γ  to specify the orientation of the particle with respect to the
laboratory coordinate system, then Eq. (5.29) gives the T matrix in the laboratory co-
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ordinate system. Therefore, Eqs. (5.11)–(5.14) and (5.29) are ideally suited for com-
puting analytically orientation-averaged scattering characteristics using a single pre-
calculated )(PT  matrix (see Sections 5.3–5.6 below).

5.2.2 Symmetry relations

According to the reciprocity relation (2.64), we must have
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Equations (5.16), (5.17), (B.7), and (B.25) give
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Using Eqs. (5.11)–(5.15) and (5.32)–(5.33), it is straightforward to show that for Eq.
(5.31) to be valid for any ,incϑ  ,incϕ  ,scaϑ  and ,scaϕ  the T matrix must obey the fol-
lowing general symmetry relation:
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(Waterman 1971).
An appropriate choice of the particle reference frame can often result in useful

symmetries of the )(PT  matrix.  For example, the z-axis of the particle coordinate
system for a rotationally symmetric body should be directed along the axis of rotation.
Because any rotation about the symmetry axis gives the same particle, we must have

),()0,0,0;( )0,0,;( PTLTLT kl
nmmn

kl
nmmn

kl
nmmn ′′′′′′ =≡α  (5.35)

which, in view of Eqs. (5.29), (B.38), and (B.6), gives

).( )( PTPT kl
nmnmmm

kl
nmmn ′′′′ = δ  (5.36)

Thus, the T matrix becomes diagonal with respect to the azimuthal indices m  and .m′
If the axis of rotation is directed along the z-axis of the laboratory reference frame,
then mirroring the particle with respect to the xz-plane gives the same particle; there-
fore, the amplitude matrix )0,;0,( incsca ϑϑS  must be diagonal (see Eq. (4.2c)).  We
thus have from Eqs. (5.12), (5.13), (5.16), (5.17), (5.30), and (5.36)
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Furthermore, if the rotationally symmetric particle has a plane of symmetry perpen-
dicular to the axis of rotation, then rotating the particle through an angle π  around
the y-axis of the laboratory reference frame gives the same particle, and we must have
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).()0,0,0;( )0,,0;( PTLTLT kl
nmmn

kl
nmmn

kl
nmmn ′′′′′′ =≡π  (5.38)

Equations (5.29), (B.38), (B.6), (B.7), and (5.36)–(5.38) then imply that
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and
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Any rotation of a spherically symmetric particle renders the same particle, and we
must have

).()0,0,0;( ),,;( PTLTLT kl
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kl
nmmn ′′′′′′ =≡γβα  (5.41)

Equations (5.29), (5.36), (5.37), and (B.47) then force us to conclude that the )(PT
matrix for a spherically symmetric scatterer must be diagonal and independent of the
azimuthal indices m and :m′

,0)(     ,0)( 2112 ≡≡ ′′′′ PTPT nmmnnmmn  (5.42)

, )(11
nnnmmnmmn bPT ′′′′ −= δδ  (5.43)

. )(22
nnnmmnmmn aPT ′′′′ −= δδ  (5.44)

We will see later that the quantities na  and nb  coincide with expansion coefficients
appearing in the Lorenz–Mie solution for homogeneous or radially inhomogeneous
spheres.  It is, therefore, natural to refer to these quantities as Lorenz–Mie coeffi-
cients.

The analytical symmetry relations for the T matrix can be used to test numerical
codes as well as to simplify considerably many equations of the T-matrix method and
develop efficient numerical procedures.  Additional properties of the T matrix for
particles with specific symmetries are discussed in Schulz et al. (1999a) and in
Kahnert et al. (2001a).

5.2.3 Unitarity

We will now derive the unitarity property of the T matrix for nonabsorbing scatterers
(i.e., with the imaginary part of the relative refractive index equal to zero) as a conse-
quence of energy conservation. We begin by defining the so-called S matrix S:
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where E  is a unit matrix.  (Note that we use a sloping S to distinguish the S matrix
from the amplitude matrix S.)  As follows from Eqs. (C.1) and (C.2), we can write
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where the superscript (2) labels vector spherical wave functions given by Eqs. (C.14)
and (C.15) but with )k()1( rhn  replaced by ).k()2( rhn   The total electric field is the vec-
tor sum of the incident and scattered fields.  From Eqs. (5.2), (5.3), (5.6), (5.7), (5.45),
and (5.46), we obtain
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Since ,)]([)( 1
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1
)2( ∗= rkhrkh nn  we have by analogy with Eqs. (C.30) and (C.31)
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Using Eqs. (5.47)–(5.49) and (C.30), (C.31), we can represent the total field in the
far-field zone as a superposition of outgoing and incoming transverse spherical
waves:
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Since the first relation of Eq. (2.1) and Eqs. (2.21), (2.40), and (2.49) give
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the time-averaged Poynting vector is
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(cf. Eq. (1.40)).
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If the scattering object is nonabsorbing, the integral of rrS ˆ)( ⋅��  over a spherical
surface at infinity must vanish:
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Recalling the orthogonality relations for vector spherical harmonics, Eqs. (C.51) and
(C.52), we obtain
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where ]   [ TT ba  denotes the string of the expansion coefficients of the incident field.
Similarly,
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Since Eq. (5.55) must hold for any incident field, we finally derive the unitarity con-
dition for nonabsorbing scatterers (Waterman 1971; Tsang et al. 1985),

.E=SS*T  (5.58)

In terms of the T matrix, Eq. (5.58) becomes
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or

].)[()( 2
1

1

2

1
1111

1

111

kl
nmmn

lk
mnnm

jl
nmnm

jk
mnnm

n

nmnj

TTTT ′′
∗

′′′′
∗

−=

∞

==

+−= (5.60a)

Obviously, for absorbing particles (i.e., with a non-zero imaginary part of the relative
refractive index) the integral in Eq. (5.55) must be negative, thereby leading to the
inequality
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This condition is equivalent to the “contractivity” of the matrix S (cf. Eq. (5.45)), i.e.,
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to the requirement that S map all nontrivial vectors into vectors with a smaller
Euclidean norm.  This in turn is equivalent to the requirement that SS*T−E  must
have only positive eigenvalues (see also Eq. (5.58)).  Equations (5.58)–(5.60) are
valid for any particle orientation with respect to the laboratory reference frame.  Tak-
ing the trace of both sides of Eqs. (5.60a) and (5.60b) over the indices },{ lk  and

},,{ nn ′  and making use of Eq. (5.36), we derive a consequence of the unitarity con-
dition for a rotationally symmetric object provided that the z-axis of the particle refer-
ence frame is directed along the axis of rotation:

2

|)|,1max(|)|,1max(

2

1

2

1

|)(| PT kl
nmnm

mnmnlk

′

∞

=′

∞

===

, ... ,1 ,0      )],()([Re 2211

|)|,1max(

±=+−≤
∞

=

mPTPT mnmnmnmn

mn

 (5.61)

where the equality holds only for nonabsorbing scatterers (Wielaard et al. 1997).

5.2.4 Translation transformation rule

We saw in subsection 5.2.1 that the rotation transformation rule for vector spherical
wave functions leads to a simple rotation transformation rule for the T matrix.  Simi-
larly, the translation addition theorem for vector spherical wave functions (Appendix
C) can be used to derive a translation transformation rule for the T matrix (Mish-
chenko et al. 1996b).

Consider the same scattering problem in two coordinate systems that have identi-
cal spatial orientations but different origins (Fig. 5.2).  Vectors 1r  and 2r  are position
vectors of the same observation point in coordinate systems 1 and 2, respectively.
The vector 12r  connects the origin of coordinate system 1 with the origin of coordi-
nate system 2, so that .2121 rrr +=   The expansions of the incident field and the scat-
tered field in the two coordinate systems are

r

r

r

1

2
Scattering
object

12

1

2

Observation
point

Figure 5.2.  The vector 12r  translates coordinate system 1 into coordinate system 2.
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where the superscripts (1) and (2) label quantities pertaining to coordinate systems 1
and 2, respectively.  In Eqs. (5.63) and (5.65), )1(

>r  and )2(
>r  are the radii of the re-

spective smallest circumscribing spheres of the scattering object centered at origins 1
and 2.  According to the translation addition theorem (cf. Eqs. (C.66) and (C.67) of
Appendix C),
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The incident field and the scattered field at the observation point are, of course, inde-
pendent of the choice of coordinate system.  Therefore, the right-hand sides of Eqs.
(5.62) and (5.64) and Eqs. (5.63) and (5.65) must be equal.  Assuming for simplicity
that both 1r  and 2r  in Eqs. (5.63) and (5.65) are greater than ),,,max( 12

)2()1( rrr >>  we
easily derive from the above equations
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we finally have
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Note that unlike the asymptotic far-field translation transformation rule for the am-
plitude matrix (Eq. (2.191)), Eq. (5.74) is exact and does not involve the assumption
of far-field scattering.

5.3 Extinction matrix for axially oriented particles

The rotation transformation rule for the T matrix can be used to develop efficient
analytical procedures for averaging scattering characteristics over particle orienta-
tions.  We begin by calculating the extinction matrix for nonspherical particles axially
oriented by an external force (Mishchenko 1991b).  As mentioned earlier, typical ex-
amples of axially oriented particles are interstellar dust grains oriented by cosmic
magnetic fields (Martin 1978; Dolginov et al. 1995) and nonspherical hydrometeors
in the earth atmosphere oriented by the aerodynamical force (Oguchi 1983; Liou
1992).  The orientation distribution of interstellar dust grains is symmetric with re-
spect to the direction of the local magnetic field, whereas the orientation distribution
of hydrometeors is symmetric with respect to the vector of the particle velocity rela-
tive to the surrounding air mass.

By directing the z-axis of the laboratory reference frame along the axis of sym-
metry, we arrive at the orientation distribution function given by Eq. (3.28).  Equa-
tions (2.140)–(2.146) and (5.11)–(5.14) show that in order to find the orientation-
averaged extinction matrix, we must first calculate the orientation-averaged T matrix
with respect to the laboratory reference frame. Assuming for simplicity that all parti-
cles have the same size and shape and taking into account that
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we have from Eqs. (3.28), (5.29), and (B.6)
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where )(PT  is the T matrix in the particle reference frame.  The Clebsch–Gordan
expansion (B.50) and Eqs. (B.5) and (B.27) give
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are Clebsch–Gordan coefficients (Appendix D).  Thus
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In other words, the quantities np  are coefficients in the expansion of the function
)(o βp  in Legendre polynomials (cf. Eqs. (B.19) and (B.21)):
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Equations (5.78) and (5.79) provide a simple analytical expression of the orientation-
averaged T matrix in terms of the T matrix computed in an arbitrarily chosen particle
reference frame.

Substituting Eq. (5.78) in Eqs. (5.11)–(5.14) gives
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The orientation-averaged Stokes extinction matrix per particle is obtained by substi-
tuting Eqs. (5.82)–(5.85) in Eqs. (2.140)–(2.146).  Quite naturally, the axial symmetry
of the particle orientation distribution makes the extinction matrix in the laboratory
reference frame independent of the azimuthal angle of the incident beam.

The above equations become simpler and computationally more efficient for rota-
tionally symmetric particles.  Directing the z-axis of the particle reference frame
along the axis of rotation yields symmetry relations (5.36) and (5.37).  Taking into
account the symmetry relation (D.7), we obtain from Eqs. (5.79), (5.82)–(5.85),
(5.16), and (5.17)
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Finally, Eqs. (5.88)–(5.90) and (2.140)–(2.146) yield the average extinction matrix
per particle:
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where
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The reference frame associated with the measuring device (e.g., a telescope or an
antenna) does not necessarily coincide with the laboratory reference frame having its
z-axis directed along the axis of symmetry of the particle orientation distribution.  Let

},,{ zyxL  be the laboratory reference frame and },,{ zyxD ′′′′′′  the reference frame
associated with the measuring device (see Fig. 5.3). Let η  be the non-negative angle
of rotation around n̂  that transforms the -ˆzn plane into the -ˆz ′′n plane.  This angle is
measured in the clockwise direction, when looking in the direction of .n̂   Obviously,
η  is the angle between the meridional planes of the beam in the laboratory and device

reference frames, respectively, and hence the angle between the unit vectors ϑ̂  and
ϑ′′ˆ  and the unit vectors ϕ̂  and .ϕ̂ ′′   We thus have for the average extinction matrix in
the device reference frame:

),()()()ˆ(D ηϑη −��=�� LΚLΚ n  (5.95)

x′

y′

z
′

x

′ y

′

z′

n̂

Figure 5.3.  The laboratory reference frame },,{ zyxL  and the device reference frame
}.,,{ zyxD ′′′′′′  The z-axis of the laboratory reference frame is directed along the axis of sym-

metry of the particle orientation distribution.
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where the rotation matrix L is defined by Eq. (1.97).
The actual computer calculation of the orientationally averaged extinction matrix

involves the following steps.

1. computation of the T matrix in the particle reference frame;
2. computation of the expansion coefficients np  for a given orientation distri-

bution function );(o βp
3. computation of the Clebsch–Gordan coefficients in Eq. (5.79) or Eq. (5.86);
4. computation of the orientation-averaged T matrix with respect to the labora-

tory reference frame via Eq. (5.79) for arbitrarily shaped particles or via Eq.
(5.86) for rotationally symmetric particles;

5. computation of the angular functions )(ϑπ mn  and );(ϑτ mn

6. computation of the orientation-averaged forward-scattering amplitude matrix
via Eqs. (5.82)–(5.85) for arbitrarily shaped particles or via Eqs. (5.88)–(5.90)
for rotationally symmetric particles;

7. computation of the orientation-averaged extinction matrix in the laboratory
reference frame via Eq. (2.140)–(2.146) for arbitrarily shaped particles or via
Eqs. (5.91)–(5.94) for rotationally symmetric particles;

8. computation of the orientation-averaged extinction matrix in the device refer-
ence frame via Eq. (5.95).

The computation of the T matrix for different types of particles will be discussed later
in this chapter.  Convenient and numerically stable and efficient recurrence formulas
for computing the angular functions and the Clebsch–Gordan coefficients are given in
Appendices B and D, respectively.

The analytical approach to computing orientation-averaged optical characteristics
is a unique feature of the T-matrix method.  It requires the T matrix to be computed
only once, with respect to the particle reference frame, and then yields the average
characteristics of a particle ensemble with respect to the laboratory reference frame by
virtue of simple analytical formulas.  It is not surprising, therefore, that the analytical
method works much faster than the standard approach based on the numerical aver-
aging of results computed for many discrete orientations of a nonspherical particle.
Extensive timing tests have shown that the analytical averaging procedure (steps 2
through 8) is indeed very efficient and requires only a small fraction of the computer
time spent on calculating the T matrix in the particle reference frame (step 1).  This
means that the T-matrix calculations of the extinction matrix for an axially symmetric
distribution of particle orientations are nearly as fast as those for a single particle in a
fixed orientation.

The analytical method for computing the orientation-averaged extinction matrix
has been applied to interstellar dust grains (Mishchenko 1991b), nonspherical hydro-
meteors (Mishchenko 1992a), and bacterial cells and clusters of dielectric particles
axially oriented by an external electrostatic field (Fucile et al. 1995; Khlebtsov et al.
1999).
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5.4 Extinction cross section for randomly oriented
particles

The orientation distribution function for randomly oriented particles is given by
21)(o ≡βp  (cf. Eqs. (3.27) and (3.28)).  Equations (5.76) and (B.17) then yield

(Mishchenko 1990b)
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Note that the averaged )(LT kl  matrices are diagonal and that their elements are inde-
pendent of the azimuthal indices m  and .m′

Assume for simplicity that the scattering particles have a plane of symmetry.
Then the extinction matrix for particles in random orientation is given by Eq. (4.32)
with
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Using Eqs. (B.5), (B.6), and (B.25), it is straightforward to show that
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Therefore, the unitarity condition (B.47) yields
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Inserting Eqs. (5.96), (5.100), and (5.101) in Eqs. (5.11) and (5.14), we finally derive
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(Mishchenko 1990b).  This remarkably simple formula shows that the extinction cross
section per particle averaged over the uniform orientation distribution is proportional
to the real part of the sum of the diagonal elements of the T matrix computed in the
particle reference frame.

The extinction cross section for randomly oriented particles must be invariant with
respect to rotations of the coordinate system.  Since the choice of the particle and
laboratory reference frames is, in principle, arbitrary, we must have
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for any ).,,( γβα  Indeed, Eqs. (5.29) and (B.41) yield the invariant
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which leads to Eq. (5.103).  The invariance of the extinction cross section with re-
spect to translations of the coordinate system (Section 2.11) and Eq. (5.102) yield
another invariant of the T matrix (see subsection 5.2.4):
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If the scattering particles are rotationally symmetric and the z-axis of the particle
reference frame is directed along the axis of rotation, then Eq. (5.37) applies, and we
have
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5.5 Scattering matrix for randomly oriented particles

Consider now the computation of the scattering matrix for randomly oriented parti-
cles. Following Section 4.2, we will assume that the incident wave propagates along
the positive direction of the z-axis of the laboratory reference frame and that the xz-
plane with 0≥x  is the scattering plane.  We will also assume that all particles are
identical and have a plane of symmetry.  Our ultimate task is to find the orientation-
averaged scattering cross section per particle �� scaC  and the elements of the normal-

ized Stokes scattering matrix ).(
~ ΘF   We will defer the computation of �� scaC  to the

following section and will focus now on computing the normalized scattering matrix
given by Eq. (4.51), in which

);,,;0,0;0,(dsindd
8

1)( incincscasca
2  

0  

  

0  

2  

0  
2 γβαϕϑϕΘϑγββα

π
Θ

πππ

=====�� ZF

     (5.108)

here the Euler angles of rotation ,α ,β  and γ  specify the particle orientation with
respect to the laboratory reference frame (cf. Eq. (3.27)).  The most straightforward
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way to compute �� )(ΘF  is to evaluate the integrals in Eq. (5.108) numerically by ap-
plying appropriate quadrature formulas and recomputing ),,;0,0;0,( γβαΘZ  for
each new scattering angle and each new combination of the Euler angles ),,( γβα
(Wiscombe and Mugnai 1986; Barber and Hill 1990). However, we will demonstrate
in Chapter 10 that ),,;0,0;0,( γβαΘZ  is a strongly oscillating function of

),,,( γβα  thereby necessitating large numbers of quadrature division points in the
numerical integrations.  This makes the numerical averaging procedure very time-
consuming, especially when results for many scattering angles are required.

We have seen in Section 4.11 that convenient representations of the elements of
the normalized scattering matrix are expansions in the generalized spherical functions
(4.75)–(4.80). The expansion coefficients appearing in these series are independent of
the scattering angle and the polarization state of the incident and scattered beams and
are functions of only the particle morphology, the size relative to the wavelength, and
the relative refractive index (see subsection 5.8.2).  Similarly, the particle T matrix is
also a quantity independent of the incident and scattered waves and is fully deter-
mined by the particle geometry and composition.  Therefore, one may expect a direct
analytical relationship between the expansion coefficients and the T matrix that does
not involve any angular or polarization variable.  Mishchenko (1991a) showed that
this relationship does exist and facilitates the development of an efficient analytical
orientation-averaging procedure that avoids the time-consuming numerical integra-
tions in Eq. (5.108).

Since many formulas become noticeably simpler in the circular-polarization rep-
resentation, we begin by considering the normalized circular-polarization phase ma-
trix defined by Eq. (4.98).  By analogy with Eq. (5.108), the orientation-averaged
circular-polarization phase matrix per particle �� )0,0;0,(CP ΘZ  is given by
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and can be calculated using Eq. (4.97).  It follows from Eqs. (5.98), (5.99), and (B.6)
that
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Therefore, Eqs. (4.95), (5.11)–(5.14), (5.98), and (5.99) yield
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From this point on, we will assume for simplicity that the scattering particles are
rotationally symmetric, so that Eqs. (5.36) and (5.37) apply.  We then use Eq. (5.29),
(B.5), (B.50), (D.6), and (D.7) to derive
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Here, the )(PT kl
nmnm ′  are elements of the T matrix computed in the particle reference

frame with the z-axis directed along the axis of particle symmetry and the
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nm
mnmnC

2211
are the Clebsch–Gordan coefficients (Appendix D).  Finally, using Eqs.

(4.97), (5.108), (4.98), (4.104), (B.17), and (B.30), we derive the following formulas
that can be used in practical computer calculations:
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and �� scaC  is the orientation-averaged scattering cross section per particle.
Thus the computation of the expansion coefficients appearing in Eqs. (4.75)–

(4.80) and the normalized Stokes scattering matrix involves the following steps:

1. computation of the T matrix of an axially symmetric scatterer in the particle
reference frame, i.e., the matrix T(P);

2. computation of the orientation-averaged scattering cross section per particle
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�� scaC  (Section 5.6);
3. computation of the quantities j

nmnT ′  via Eqs. (5.124) and (5.125);

4. computation of the quantities j
nnnA

1′  via Eq. (5.123);

5. computation of the quantities j
mnnB

1
 via Eq. (5.122);

6. computation of the quantities pq
mniD  via Eqs. (5.132)–(5.136);

7. computation of the circular-polarization expansion coefficients s
pqg  via Eqs.

(5.126)–(5.130);
8. computation of the Stokes-representation expansion coefficients via Eqs.

(4.109)–(4.114);
9. computation of the elements of the normalized Stokes scattering matrix via

Eqs. (4.75)–(4.80).

The most time-consuming part of any computations based on the T-matrix method
is the evaluation of multiply nested summations.  An important advantage of the ana-
lytical averaging procedure is that the maximal order of nested summations is only
three, thereby making this procedure ideally suited to the development of an efficient
computer code.  Detailed timing tests have shown that the analytical averaging over
orientations (steps 2–9) requires only a small fraction of the computer time needed to
compute the T(P) matrix (Mishchenko 1991a, 1993; Mackowski and Mishchenko
1996; Wielaard et al. 1997).  It comes as no surprise, therefore, that direct compari-
sons of the performance of the analytical and numerical methods indicate that the
former is faster by a factor of several tens (Mishchenko 1991a; W. M. F. Wauben,
personal communication).  An equally rewarding feature of the analytical averaging
procedure is the demonstration of the close connection between the T-matrix method
and the concept of expanding the elements of the normalized scattering matrix in gen-
eralized spherical functions (or Wigner d-functions).

The analytical averaging method has been applied to a wide class of rotationally
symmetric scatterers, such as spheroids, finite circular cylinders, osculating spheres,
so-called Chebyshev particles, and linear chains of spheres (Sections 5.11 and 5.13).
Mackowski and Mishchenko (1996) extended the method to asymmetric particles.

Khlebtsov (1992) and Fucile et al. (1993) developed theoretical formalisms that
exploit the rotation transformation property of the T matrix, but are not based on ex-
panding the normalized scattering matrix in generalized spherical functions and do
not exploit the advantage of performing as much work analytically as possible.
Borghese et al. (2001) considered several simple analytical orientation distribution
functions other than the uniform orientation distribution.  Paramonov (1995) straight-
forwardly extended the analytical orientation-averaging approach to arbitrary
quadratically integrable orientation distribution functions.  However, the resulting
formulas involve highly nested summations, and their efficient numerical implemen-
tation may often be problematic.  In such cases the standard averaging approach em-
ploying numerical integrations over Euler orientation angles in Eq. (3.19) and based
on formulas of Section 2.4 may prove to be more efficient (cf. Battaglia et al. 2001).
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5.6 Scattering cross section for randomly oriented
particles

The scattering cross section per particle for randomly oriented particles with a plane
of symmetry is given by Eq. (4.40), in which �� )(ΘF  is given by Eq. (5.108).  Re-
writing Eq. (2.123) as
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Recall that Eqs. (5.112)–(5.115) are valid for arbitrary particles.  Therefore, using
Eqs. (4.97), (5.29), (B.17), and (B.47) and taking into account Eq. (5.75), we derive
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(Mishchenko 1991c).  Thus the scattering cross section per particle averaged over the
uniform orientation distribution is proportional to the sum of the squares of the abso-
lute values of the T-matrix elements computed in the particle reference frame.  This
formula is as simple as Eq. (5.102) for the orientation-averaged extinction cross sec-
tion.  If the scattering particles are rotationally symmetric and the z-axis of the parti-
cle reference frame coincides with the axis of rotation, then Eqs. (5.36), (5.37), and
(5.140) yield
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After the average extinction and scattering cross sections per particle have been cal-
culated, the average absorption cross section and the single-scattering albedo can be
found from Eqs. (4.44) and (4.45).

Like the extinction cross section, the scattering cross section for randomly ori-
ented particles must be invariant with respect to rotations of the coordinate system.
Since the choice of the particle and laboratory reference frames is arbitrary, Eq.
(5.140) implies that
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for any ).,,( γβα   This invariant indeed follows from Eqs. (5.29) and (B.41).  The
invariance of the scattering cross section with respect to translations of the coordinate
system (Section 2.11) and Eq. (5.140) yield yet another invariant of the T matrix (cf.
subsection 5.2.4):
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The energy conservation law implies that ,extsca ��≤�� CC  and we have from Eqs.
(5.102) and (5.140)
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where the equality holds only for nonabsorbing particles.  This formula can also be
derived by taking the trace of both sides of Eqs. (5.60a ) and (5.60b) over the indices

},,{ nn ′  },,{ mm ′  and }.,{ lk

5.7 Spherically symmetric scatterers (Lorenz–Mie theory)

All T-matrix equations become considerably simpler and reduce to the corresponding
equations of the Lorenz–Mie theory when the scattering particle is spherically sym-
metric and Eqs. (5.42)–(5.44) apply.  Specifically, Eqs. (5.11)–(5.14) become
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Quite naturally, now the amplitude matrix depends only on the difference of the azi-
muthal angles of the incident and scattered waves rather than on their specific values.
The amplitude matrix becomes especially simple when the incident wave propagates
along the positive direction of the z-axis of the laboratory reference frame and

:incsca ϕϕ =
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(cf. Eqs. (5.16)–(5.17) and (5.110)–(5.111)), where nn nn 1)1( ππ +=  and =nτ

.)1( 1nnn τ+ If we take into account that the definition of associated Legendre func-

tions adopted by Bohren and Huffman (1983) differs from ours by a factor m)1(−  and
use Eqs. (B.5) and (B.28), it becomes obvious that Eqs. (5.149)–(5.151) are equiva-
lent to Eqs. (4.74) and (4.75) of Bohren and Huffman.  In view of Eq. (5.150), we can
easily show that the normalized Stokes scattering matrix for a spherically symmetric
particle is given by Eq. (4.65) with
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Equations (5.102) and (5.140) yield
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One way of calculating the coefficients in the expansions (4.75)–(4.80) is to
evaluate numerically the integrals in Eqs. (4.81)–(4.86) after substituting Eqs.
(5.152)–(5.155).  One can also use closed-form analytical formulas that directly ex-
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press the expansion coefficients in terms of the Lorenz–Mie coefficients na  and nb
and so bypass the numerical angular integration.  These formulas are a special case of
the general formulation outlined in Section 5.5 and are derived as follows. We first
write
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(cf. Eqs. (4.95), (5.98), (5.99), and (5.149)–(5.151)).  We then substitute Eqs. (5.158)
and (5.159) into Eq. (4.97) and expand the products of two d-functions in the
Clebsch–Gordan series of Eq. (B.50).  Finally, using Eqs. (4.98), (4.105), (B.5),
(B.30), and (B.33) and switching from Clebsch–Gordan coefficients to 3j symbols
(Appendix D), which are more symmetric, we obtain
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where ).1,max( +−= nnsM   These formulas were first derived by Domke (1975)
and later corrected by Mishchenko (1990c).  Finally, the Stokes-representation expan-
sion coefficients are calculated using Eqs. (4.109)–(4.114).  An alternative analytical
method for computing the expansion coefficients was developed by Bugaenko (1976).

Taking into account that
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(cf. Eq. (45) in Section 8.5 of Varshalovich et al. (1988) and Eq. (D.8)) and using
Eqs. (4.92) and (4.109), we derive, after somewhat tedious but simple algebra,
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(Debye 1909).  The radiation force exerted on the spherical particle and the cross sec-
tion for radiation pressure can be found from Eqs. (4.42), (4.43), (5.156), (5.157), and
(5.164).

5.8 Extended boundary condition method

The attractive mathematical formalism outlined in the previous sections would serve
little practical purpose if there were no efficient numerical techniques for computing
the T matrix for various kinds of particles.  Fortunately, several such techniques have
been developed for both simple single-body particles and clusters composed of simple
monomers.  In this section we will discuss the computation of the T matrix for simple
particles, while the following section will deal with clusters.

5.8.1 General formulation

The standard scheme for computing the T matrix for simple particles is based on the
extended boundary condition method (EBCM) developed by Waterman (1965, 1971).
Consider a finite scattering object in the form of a single homogeneous body occu-
pying a region INTV  bounded by a closed surface S and imbedded in an infinite ho-
mogeneous, isotropic, nonmagnetic, and nonabsorbing medium (Fig. 5.4).  The region

INTV  is filled with an isotropic nonmagnetic material and is centered at the origin of
the particle reference frame.  The infinite region exterior to the particle is denoted by

.EXTV   The electric fields in the regions EXTV  and INTV  satisfy Eqs. (2.3) and (2.4),
respectively.

The vector Green’s theorem for a regular surface 1S  bounding a volume 1V  is
(Morse and Feshbach 1953)
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5   T-matrix method and Lorenz–Mie theory 143

where n̂  is the unit vector along the local outward normal to the surface.  We apply
Eq. (5.165) to the exterior region EXTV  and insert Ea =  and ,),( crrb ⋅′= G

�

 where

),( rr ′G
�

 is the free space dyadic Green’s function, Eq. (2.13), and c is an arbitrary
constant vector.  The surface integral on the right-hand side of Eq. (5.165) is the sum
of two integrals, an integral over the spherical surface ∞S  bounding the exterior re-
gion at infinity and an integral over the particle surface S.  In view of Eqs. (2.3) and
(2.8), Eq. (5.165) becomes
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where n̂  is the local normal at either ∞S  or S; it is directed away from the particle.
Since c is arbitrary, it can be cancelled out on both sides of Eq. (5.166).  In view of
Eqs. (2.20), (2.21), and (2.24), the contribution of the scattered field to the integral
over ∞S  on the right-hand side of Eq. (5.166) vanishes.  Therefore, the integral over

∞S  is independent of the presence of the particle and thus supplies the incident field
at .r′   Hence we have for EXTV∈′r
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where we have used Eq. (2.1) with 01 µµ =  and the identities
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The subscript plus in Eq. (5.168) indicates that the electric and magnetic fields inside
the integral are those on the exterior side of the surface S.  For ,INTV∈′r

r>  

r >  

S

Figure 5.4.  Cross section of an arbitrarily shaped, homogeneous scattering object bounded by
a closed surface S.  >r  is the radius of the smallest circumscribing sphere centered at the origin
of the particle coordinate system and <r  is the radius of the largest concentric inscribed sphere.
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Equation (5.171) is called the extended boundary condition because it analytically
extends r′  to the interior region.  The gist of the extended boundary condition
method is that one finds the fields )(rE+  and )(rH+  on the exterior side of the parti-
cle surface using Eq. (5.171) and, assuming that the incident field is known, then cal-
culates the scattered field using Eq. (5.168).

The free space dyadic Green’s function can be expressed in terms of vector
spherical wave functions according to Eq. (C.61).  Let >r  be the radius of the smallest
circumscribing sphere of the scattering particle centered at the origin and <r  be the
radius of the largest concentric inscribed sphere (cf. Fig. 5.4).  For all <<′ rr  and all
r  on S, we have .rr <′   Therefore, substituting Eq. (C.61) in Eq. (5.171), we obtain
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Similarly, for all >>′ rr  and all r  on S, we have .rr ′<   Therefore, substituting
Eq. (C.61) into Eq. (5.168) yields
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In order to compute the expansion coefficients of the scattered field via Eq.
(5.175), we need first to find the electric and magnetic fields on the exterior side of
the particle surface from Eq. (5.173).  We will assume that the electric field every-
where inside the scattering object can be expanded in regular vector spherical wave
functions of the interior wave equation:
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where 2k  is the wave number in the interior region.  In view of Eq. (2.2) with
02 )( µµ ≡r  and Eqs. (C.14) and (C.15), the matching magnetic field expansion is
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The boundary conditions require continuity of the tangential components of the elec-
tric and magnetic fields, i.e.,
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where the subscript minus labels the fields on the interior side of the particle surface
(cf. Eqs. (1.13) and (1.15)).  Substituting Eqs. (5.176)–(5.178) into Eq. (5.173) and
using Eq. (5.169), we have
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Similarly, substituting Eqs. (5.176)–(5.178) into Eq. (5.175) yields
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Comparing Eqs. (5.8), (5.179), and (5.185), we finally derive
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This formula expresses the elements of the T matrix in terms of integrals of vector
products of vector spherical wave functions over the particle surface.  The surface
integrals in Eqs. (5.184) and (5.190) are usually calculated using appropriate coordi-
nate systems and quadrature formulas.  For example, in spherical coordinates the sur-
face S is defined by the formula

,ˆ),(),( rr ϕϑϕϑ r=      (5.192)

and we have (cf. Guggenheimer 1977)
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Our derivation of the EBCM is similar to those given by Waterman (1971) and
Tsang et al. (1985) and explicitly avoids invoking the Rayleigh hypothesis (cf. Sec-
tion 5.1).  Alternative derivations and formulations have been discussed by Barber
and Yeh (1975), Ström (1975), Agarwal (1976), Bates and Wall (1977), Morita
(1979), and Ström and Zheng (1987).  The derivation given by Waterman (1979)
made it especially clear that the EBCM is not based on the Rayleigh hypothesis and
that the scattering objects need not be convex and close to spherical in order to ensure
the validity of the method.  It is interesting that in fact the EBCM can be derived from
the Rayleigh hypothesis (Bates 1975; Chew 1995; Schmidt et al. 1998).  This does
not mean, however, that the EBCM is equivalent to the Rayleigh hypothesis or re-
quires it to be valid (Lewin 1970).  The equivalence of the two approaches would
follow from a reciprocal derivation of the Rayleigh hypothesis from the EBCM, but it
remains unclear whether such a derivation exists.

Peterson and Ström (1974) extended the EBCM to layered scatterers (see also
Bringi and Seliga 1977; Wang and Barber 1979).  Scattering by more general com-
posite objects was considered by Ström and Zheng (1988) and Zheng and Ström
(1989).  Lakhtakia et al. (1985b) and Lakhtakia (1991) applied the EBCM to light
scattering by chiral particles embedded in an achiral isotropic or chiral host medium.

The EBCM is a quite general technique and is applicable to arbitrarily shaped
homogeneous and composite particles.  However, relatively few attempts have been
made to compute light scattering by bodies lacking rotational symmetry such as tri-
axial ellipsoids (Schneider and Peden 1988; Schneider et al. 1991), cubes (Laitinen
and Lumme 1998; Wriedt and Comberg 1998; Wriedt and Doicu 1998a), finite hex-
agonal cylinders (Baran et al. 2001a,b; Havemann and Baran 2001), and general
polyhedral cylinders of finite length (Kahnert 2001a).  As we will show in subsection
5.8.3, Eqs. (5.180)–(5.184) and (5.186)–(5.190) become much simpler for bodies with



5   T-matrix method and Lorenz–Mie theory 147

rotation symmetry and result in more efficient computer algorithms.  Furthermore, we
have seen in earlier sections of this chapter that the computation of scattering and
absorption characteristics for rotationally symmetric particles in fixed, partial, and
random orientations is also significantly less involved, owing to the symmetry rela-
tions (5.36) and (5.37).  This explains why many EBCM codes have been specifically
designed to deal with rotationally symmetric scatterers (e.g., Wiscombe and Mugnai
1986; Barber and Hill 1990; Mishchenko and Travis 1998; Quirantes 1999).

5.8.2 Scale invariance rule

Examination of Eqs. (5.180)–(5.184) and (5.186)–(5.191) leads to an important result,
as follows.  If we multiply all particle dimensions by a constant factor f (thereby not
changing the particle shape) and multiply the wave numbers 1k  and 2k  for the exte-
rior and interior regions, respectively, by the factor f1  then the elements of the T
matrix do not change.  This “scale invariance” rule can be reformulated as follows.  If
the particle geometry is characterized by the shape and a typical dimension a (for
example, the largest or the smallest particle dimension or the radius of a surface- or
volume-equivalent sphere) then the elements of the T matrix do not depend on spe-
cific values of a, ,1k  and ,2k  but rather depend on the product of a and ,1k  tradition-
ally called the size parameter x, and the ratio of 2k  to ,1k  which is simply the relative
refractive index .1212 mmm == kk   (The size parameter can also be expressed, in
terms of the wavelength of the incident wave in the exterior region ,2 11 kπλ =  as

.)2 1λπax =   Obviously, all scattering characteristics that involve only the elements
of the T matrix also obey the scale invariance rule.  Equations (5.11)–(5.14) show that
the products of 1k  and the elements of the amplitude matrix are such characteristics.
As a consequence, the scale invariance rule is also obeyed by: the products of 2

1k  and
the elements of the phase and scattering matrices; the products of 2

1k  and the optical
cross sections; the products of 2

1k  and the extinction matrix elements; the efficiency
factors; the elements of the normalized scattering matrix; the coefficients in the ex-
pansions of the elements of the normalized scattering matrix in generalized spherical
functions; the single-scattering albedo; and the asymmetry parameter.  In general, the
scale invariance rule applies to any dimensionless scattering characteristic.  Although
we have explicitly derived the scale invariance rule only for homogeneous particles, it
can be shown to follow from Eqs. (2.18) and (2.27)  for particles with arbitrary mor-
phology (Mishchenko 2005).

The scale invariance rule can be very helpful in practice because it makes a single
computation or measurement applicable to all couplets {size, wavelength} with the
same ratio of size to wavelength, provided that the relative refractive index does not
change.  In particular, we will see in Section 8.2 that this rule underlies the basic idea
of the microwave analog technique for laboratory measurements of electromagnetic
scattering by small particles.
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5.8.3 Rotationally symmetric particles

If the scattering particle is rotationally symmetric and the z-axis of the particle refer-
ence frame is directed along the axis of rotation then

,ˆ)(),( rr ϑϕϑ r=      (5.194)
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where .ϑϑ ∂∂= rr   Therefore, the -ϕ integration in Eq. (5.184) gives simply mm ′πδ2
(cf. Eq. (5.75)).  Using Appendix C and Eqs. (5.16) and (5.17), we get
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Corresponding formulas for kl
nmmnJ ′′Rg  are obtained from Eqs. (5.196)–(5.199) by

replacing )( 1
)1( rkhn  with ).( 1rkjn  Equations (5.196)–(5.199) are equivalent to Eqs.

(39a)–(39d) on pp. 187 and 188 of Tsang et al. (1985), but we use Wigner d-functions
instead of associated Legendre functions.  As discussed in Appendix B, the computa-
tion of the Wigner d-functions using the recurrence relation of Eq. (B.22) is numeri-
cally stable and accurate, whereas the corresponding recurrence relation for the asso-
ciated Legendre functions leads to computer overflows for large n and .||m

Equations (5.179)–(5.191) and (5.196)–(5.199) show that the matrices Q, RgQ,
and )(PT  can be regrouped such that they become block-diagonal with each block
corresponding to a different m.  Since there is no coupling between the different m
indices, each block is independent of all other blocks and can be computed separately.
This results in significant savings of computer resources, especially for particles
larger than the wavelength.  An additional saving of computer time can be achieved
by restricting the computer calculations to non-negative m and using the symmetry
relation (5.37).  Since 0)(0 ≡ϑπ n  (cf. Eq. (5.16)), Eqs. (5.196) and (5.199) yield
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Therefore, 0)(12
00 ≡′ PT nn  and ,0)(21

00 ≡′ PT nn  in agreement with Eq. (5.37).
The integrals in Eqs. (5.196)–(5.199) are usually evaluated by means of a Gauss
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where px  and pw  are quadrature division points and weights, respectively (e.g.,
Krylov 1962; Abramowitz and Stegun 1964).  The quadrature must contain a large
enough number GN  of division points to resolve the angular variation of the inte-
grands, which may be very rapid for highly aspherical particles.

For particles with a plane of symmetry perpendicular to the axis of rotation, such
as spheroids and circular cylinders,

),()( ϑϑπ rr =−      (5.203)

).()( ϑϑπ ϑϑ rr −=−      (5.204)

Therefore, the symmetry relations (cf. Eqs. (5.16), (5.17), (5.32), (5.33), and (B.7))
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and Eqs. (5.196)–(5.199) yield
0RgRg 22112211 ==== ′′′′ nmnmnmnmnmnmnmnm QQQQ      (5.208)

unless nn ′+  is even and

0RgRg 21122112 ==== ′′′′ nmnmnmnmnmnmnmnm QQQQ      (5.209)

unless nn ′+  is odd, in full agreement with Eqs. (5.39) and (5.40).  Equations (5.208)
and (5.209) reduce the number of non-vanishing matrix elements by a factor of 2.
Furthermore, the non-vanishing elements are computed twice as fast because one can
restrict the summation in Eq. (5.202) to 21 GNp ≤≤  (assuming that GN  is even)
and then double the result.

5.8.4 Convergence

Although expansions (5.2), (5.3) and (5.6), (5.7) and hence the T matrix are infinite,
in general, in practical computer calculations they must be cut off to a finite size by
truncating all expansions at an .maxnn =  This size depends on the required accuracy
of computations and is found by increasing the size of the Q and RgQ matrices in Eq.
(5.191) until an accuracy criterion is satisfied.  As an example, the dotted curve in
Fig. 5.5(a) shows the quantity
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versus maxn  for randomly oriented oblate spheroids with an aspect ratio of 3, relative
refractive index i0.02,1.5 +=m  and surface-equivalent-sphere size parameter

,152 1ss == λπrx  where sr  is the surface-equivalent-sphere radius and 11 2 kπλ =
is the wavelength of the incident light in the surrounding medium.  The results were
obtained with a FORTRAN code employing double-precision (REAL*8 and
COMPLEX*16) floating-point variables.  The matrix Q was inverted using the stan-
dard Gaussian elimination scheme with partial pivoting (Forsythe et al. 1977).  It is
apparent that, for these particles, the EBCM provides a good convergence rate and
excellent numerical accuracy.

It turns out, however, that numerical stability of the EBCM can become signifi-
cantly worse in calculations for (partially) concave particles and particles with very
large real and/or imaginary parts of the relative refractive index, large size parame-
ters, and/or extreme geometries such as spheroids or cylinders with large aspect ra-
tios.  The broken curve in Fig. 5.5(a) exemplifies the unstable behavior of the double-
precision EBCM calculations for a more challenging case of randomly oriented pro-
late spheroids with an aspect ratio of 4, relative refractive index i0.02,1.5 +=m  and
surface-equivalent-sphere size parameter .16s =x   The instability arises because dif-
ferent elements of the matrix Q can differ by many orders of magnitude, thereby
making the numerical calculation of the inverse matrix 1−Q  an ill-conditioned
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process strongly influenced by round-off errors.  Because of this ill-conditioned na-
ture, even small numerical errors in the computed elements of the Q matrix can result
in large errors in the elements of the inverse matrix .1−Q   The round-off errors be-
come increasingly significant with increasing particle size parameter and/or aspect
ratio and rapidly accumulate with increasing size of the Q matrix.  As a result, the
EBCM computations can become very slowly convergent or even divergent (Barber
1977; Varadan and Varadan 1980; Wiscombe and Mugnai 1986).
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Figure 5.5.  Convergence of different EBCM codes in computations for various kinds of
particle (see text).
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Efficient approaches for overcoming the numerical-instability problem in computing
the T matrix for highly elongated particles are the so-called iterative EBCM (IEBCM)
and a closely related multiple multipole EBCM (otherwise known as the null-field
method with discrete sources) (Iskander et al. 1983, 1989b; Doicu and Wriedt 1997a,b;
Wriedt and Doicu 1998a; Doicu 1999; Doicu et al. 2000).  The main idea of the IEBCM
is to represent the internal field by several sub-domain spherical function expansions
centered on the major axis of an elongated scatterer.  These sub-domain expansions are
linked to each other by being explicitly matched in the appropriate overlapping zones.
The IEBCM has been used to compute light scattering and absorption by highly elon-
gated, absorbing and weakly absorbing dielectric scatterers with aspect ratios as large as
17.  In some cases the use of the IEBCM instead of the regular EBCM has permitted
stable computations at more than quadruple the former maximal convergent size pa-
rameter.

The disadvantage of the IEBCM is that its numerical stability is achieved at the ex-
pense of a considerable increase in computer code complexity and required computer
time.  Moreover, the IEBCM does not generate a single-expansion T matrix that could be
used in the analytical orientation-averaging procedures.  The latter problem was specifi-
cally addressed by Doicu and Wriedt (1999).

Mishchenko and Travis (1994a) showed that an efficient general approach to stabi-
lizing the numerical process of inverting the Q matrix is to improve the accuracy with
which this matrix is calculated and inverted.  Specifically, they suggested calculating the
elements of the Q matrix and performing the matrix inversion using extended-precision
(REAL*16 and COMPLEX*32) instead of double-precision floating-point variables.  As
an example, the solid curve in Fig. 5.5(a) was computed using an extended-precision
EBCM code and shows a good convergence rate and a quite acceptable accuracy for the
same particles that could not be handled by the double-precision code (the broken curve).
Extensive checks have demonstrated that using the extended-precision EBCM code more
than doubles the maximal size parameter for which convergent results can be obtained.
Timing tests performed on IBM RISC workstations have shown that the use of extended-
precision arithmetic slows down computations by a factor of only 5–6.  The key features
of this approach are its simplicity and the fact that little additional programming effort
and extra memory are required.

The numerical instability of the EBCM becomes especially noticeable for nonab-
sorbing or weakly absorbing particles.  To ameliorate this problem, Waterman (1973)
and Lakhtakia et al. (1984, 1985a) proposed to exploit the unitarity property of the T
matrix for nonabsorbing scatterers, Eq. (5.59).  Their technique is based on the so-
called iterative orthogonalization of the T matrix and generates numerically stable
results for elongated and flattened spheroids with large aspect ratios. The obvious
disadvantage of this technique is that it applies only to particles with zero absorption.
Wielaard et al. (1997) demonstrated that a superior approach is to invert the Q matrix
using a special form of the so-called LU-factorization method.  This approach is ap-
plicable to absorbing as well as nonabsorbing particles and increases the maximal
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convergent size parameter for nonabsorbing and weakly absorbing scatterers several
times.  Figure 5.5(b) illustrates the performance of this technique in application to
randomly oriented prolate spheroids with an aspect ratio of 4, relative refractive index

1.5,=m  and surface-equivalent-sphere size parameter .16s =x  The broken curve
shows that the extended-precision EBCM code based on the Gaussian elimination
scheme with partial pivoting fails to produce convergence, whereas the extended-
precision code exploiting the special LU-factorization method generates very accurate
results.

5.8.5 Lorenz–Mie coefficients

Consider finally the simplest case, a homogeneous spherical particle having a radius a.
Using Eqs. (5.98), (5.99), and (B.17), it is easy to show that
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Taking also into account that 0)( ≡ϑϑr  and defining the size parameter of the sphere
as ,1akx =  we derive from Eqs. (5.196)–(5.199)
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where

),()(       ),()( )1( zjzzzhzz nnnn == ψξ      (5.218)

and 12 kk=m  is the relative refractive index.  Equations (5.180)–(5.183), (5.186)–
(5.189), and (5.191) finally yield Eqs. (5.42)–(5.44), where the Lorenz–Mie
coefficients na  and nb  are given by
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Equations (5.219) and (5.220) are identical to Eqs. (4.56) and (4.57) of Bohren and
Huffman (1983).

5.9 Aggregated and composite particles

Consider now the computation of the T matrix for a cluster consisting of N arbitrarily
shaped and arbitrarily oriented components.  We assume that the T matrices of all clus-
ter components are known in their respective local coordinate systems with origins inside
the components.  We also assume that all these local coordinate systems have the same
spatial orientation as the common reference frame of the cluster centered at O and that
the smallest circumscribing spheres of the components centered at the origins of their
respective local coordinate systems do not overlap (Fig. 5.6).  The total electric field
scattered by the cluster can be represented as a superposition of individual (partial) scat-
tering contributions from each component:
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where r connects the origin of the common coordinate system and the observation
point.  Because of  electromagnetic interactions between the components, the individ-
ual scattered fields are interdependent, and the total electric field exciting each com-
ponent can be represented as a superposition of the external incident field )(inc

0 rE  and

O

1

j
l

N

Observation
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r

Figure 5.6.  Local and common reference frames used to describe electromagnetic scattering
by a cluster consisting of N arbitrarily shaped components.
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the sum of the partial fields scattered by all other components:
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To make use of the information contained in the jth component T matrix, we must ex-
pand the fields incident on and scattered by this component in vector spherical wave
functions centered at the origin of the component’s local coordinate system:
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where jr  connects the origin of the jth local coordinate system and the observation point,

>jr  is the radius of the smallest circumscribing sphere of the jth component, the coeffi-

cients 0j
mna  and 0j

mnb  describe the external incident field, and the expansion coefficients
jl

mna  and jl
mnb  describe the contribution of the lth component to the field illuminating the

jth component:
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The expansion coefficients of the illuminating and scattered fields are related via the jth
component T matrix :jT

....,,1      ,
0

0

Nj
jl

jl

jl
j

j
j

j

j

=
��
�

�

�

��
�

�

�

�
�
�

	





�

�
+

�
�
�

	





�

�
=

�
�
�

	





�

�

≠
b
a

b
a

T
q
p

     (5.227)

The field scattered by the lth component can also be expanded in outgoing vector spheri-
cal wave functions centered at the origin of the lth local coordinate system:
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where lr  connects the origin of the lth coordinate system and the observation point.
Using the translation addition theorem (C.68), the vector spherical wave functions
appearing in Eq. (5.228) can be expanded in regular vector spherical wave functions
centered at the origin of the jth reference frame:
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where the vector jllj rrr −=  connects the origins of the lth and jth local coordinate sys-
tems and the translation coefficients )( 1 ljmn kA rµν  and )( 1 ljmn kB rµν  are given by Eqs.

(C.69) and (C.70).  Using Eqs. (5.226)–(5.229), we finally derive, in matrix notation,
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Since the expansion coefficients of the external plane electromagnetic wave 0j
mna  and

0j
mnb  and the translation coefficients )( 1 ljmn kA rµν  and )( 1 ljmn kB rµν  can be computed via

closed form analytical formulas, Eq. (5.230) can be considered as a system of linear al-
gebraic equations which can be solved numerically and yields the expansion coefficients
of the individual scattered fields j

mnp  and j
mnq  for each of the cluster components.  When

these coefficients are known, Eqs. (5.224) and (5.221) give the total field scattered by the
cluster.

Equation (5.230) forms the basis of the T-matrix superposition method for aggre-
gates.  It becomes especially simple for a cluster consisting of spherical components
since in this case the individual component T matrices are diagonal, with standard Lo-
renz–Mie coefficients standing along their main diagonals (Eqs. (5.42)–(5.44)).  The
resulting equation becomes identical to that derived using the so-called multi-sphere su-
perposition formulation or multi-sphere separation of variables technique (Bruning and
Lo 1971a, b; Borghese et al. 1979; and especially Fuller and Mackowski 2000 and refer-
ences therein).  In this regard, the latter can be considered as a particular case of the su-
perposition T-matrix method.  Numerical solutions of Eq. (5.230) for clusters of spheres
have been obtained using different techniques (direct matrix inversion, the method of
successive orders of scattering, the conjugate gradients method, the method of iterations,
the recursive method) and have been extensively reported in the literature (Hamid et al.
1991; Quinten and Kreibig 1993; Fuller, 1994, 1995a; Xu 1995; Jin and Huang 1996a;
Videen et al. 1998a; Quinten 1999).  Jin and Huang (1996b) and Huang and Jin (1998)
applied the superposition T-matrix formalism to clusters of spheroids.  Fikioris and Uzu-
noglu (1979), Borghese et al. (1992, 1994), Skaropoulos et al. (1994), Fuller (1995b),
Mackowski and Jones (1995), and Auger et al. (2001) have extended the superposition
approach to the case of internal aggregation by solving the problem of light scattering by
spherical particles with eccentric spherical inclusions, whereas Videen et al. (1995) con-
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sidered the more general case of a sphere with an irregular inclusion.  Of course, particles
with a single inclusion can also be treated using the standard EBCM for multilayered
scatterers (Peterson and Ström 1974).

Inversion of Eq. (5.230) gives
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(Mackowski 1994), where the matrix jlT  transforms the coefficients of the incident-
field expansion centered at the lth origin into the jth-origin-centered expansion coeffi-
cients of the partial field scattered by the jth component.  The calculation of the jlT
matrices entails the numerical inversion of a large matrix and can be a time-
consuming process.  However, these matrices are independent of the incident field
and depend only on the cluster configuration and the shapes and orientations of the
components.  Therefore, they need be computed only once and then can be used in
computations for any direction and polarization state of the incident field.

Furthermore, in the far-field region the scattered-field expansions from the indi-
vidual components can be transformed into a single expansion centered at the origin
O of the common reference frame (Fig. 5.6).  This single origin can represent the av-
erage of the component particle positions but in general can be arbitrary.  The first
step is to expand the incident and total scattered fields in vector spherical wave func-
tions centered at O, according to Eqs. (5.2) and (5.3).  We again employ the transla-
tion addition theorem given by Eq. (C.66),
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and by the reciprocal formula (C.67),
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where lOl rrr −=  and .rrr −= jjO   We then easily derive
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Finally, using Eqs. (5.231), (5.234), and (5.235) we obtain Eq. (5.8), in which the cluster
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T matrix is given by
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(Peterson and Ström 1973; Mackowski 1994).  This cluster T matrix can be used in Eqs.
(5.11)–(5.14) to compute the amplitude matrix for a fixed cluster orientation and as input
to the analytical procedures for averaging scattering characteristics over cluster orienta-
tions (Mishchenko and Mackowski 1994; Mackowski and Mishchenko 1996).

In agreement with Eqs. (5.36) and (5.37), the T matrix becomes much simpler when
the cluster is a rotationally symmetric scatterer in the form of a linear chain of spheres
and when the z-axis of the common reference frame is directed along the line connecting
the centers of the component spheres (Mishchenko and Mackowski 1994).  In general,
one may need to combine Eq. (5.236) with the rotation transformation rule (5.29) in or-
der to compute efficiently the T matrix for a cluster consisting of arbitrarily oriented and
arbitrarily positioned nonspherical components (Jin and Huang 1996b).

Wang and Chew (1993) developed a recursive T-matrix algorithm, which com-
putes the T matrix for a cluster consisting of n components by using the T matrix of
the newly added nth component and the T matrix of the cluster consisting of the pre-
vious 1−n  components.  The apparent advantage of this technique is that it reduces
computation of the T matrix for a cluster consisting of N components into a recursive
sequence of 1−N  two-component calculations.  However, for reasons alluded to pre-
viously (Section 5.1), the smallest circumscribing sphere of each newly added com-
ponent must always reside outside a sphere enclosing the cluster built at the previous
recursion step.  This constraint appears to limit the recursive algorithm to relatively
simple and sparse clusters, for example, linear chains of spheres.

5.10 Lorenz–Mie code for homogeneous polydisperse
spheres

The FORTRAN code for computing the scattering characteristics of an ensemble of
polydisperse, homogeneous spherical particles is based on the Lorenz–Mie theory and
is available on the World Wide Web at http://www.giss.nasa.gov/~crmim.  This sec-
tion discusses practical aspects of Lorenz–Mie calculations, describes the input and
output parameters of the code, and provides an illustrative example.

5.10.1 Practical considerations

The numerical computation of the Lorenz–Mie coefficients na  and nb  and the angu-
lar functions nπ  and nτ  appearing in Eqs. (5.149) and (5.151) is considered in detail
in many publications (e.g., Wiscombe 1980; Bohren and Huffman 1983; de Rooij and
van der Stap 1984, and references therein) and will not be specifically discussed here.



5   T-matrix method and Lorenz–Mie theory 159

In practical computer calculations, the infinite series of Eqs. (5.149) and (5.151) are
truncated to a finite size maxn  that depends on the size parameter ,1rkx =  where r is
the particle radius.  A simple empirical criterion for choosing maxn  adopted in our
code is

805.4)( 31
max ++= xxxn      (5.237)

and is somewhat more conservative (i.e., it takes more terms than may be necessary)
than that proposed by Wiscombe (1980).

The basic far-field optical characteristics of a homogeneous spherical particle are
the extinction cross section ,extC  the scattering cross section ,scaC  and the expansion
coefficients s

pα  p(  = 1, 2, 3, 4) and s
pβ  p(  = 1, 2) appearing in Eqs. (4.75)–(4.80).

All these quantities can be directly expressed in terms of the Lorenz–Mie coefficients
na  and nb  (Section 5.7) and must be averaged over an appropriate normalized distri-

bution of sphere radii )(rn  (Section 3.2) in order to obtain the scattering characteris-
tics of a particle ensemble.  All other cross sections, the single-scattering albedo, the
efficiency factors, the asymmetry parameter, and the elements of the normalized
scattering matrix for an arbitrary set of scattering angles are then found from Eqs.
(4.43)–(4.46), (4.75)–(4.80), and (4.92).  The Wigner d-functions entering Eqs. (4.75)
–(4.80) are computed using the recurrence relation (B.22) and the initial conditions
(B.23) and (B.24).

The computation of the ensemble-averaged extinction and scattering cross sec-
tions per particle is straightforward:
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where ir  and iu  are the division points and weights, respectively, of a quadrature
formula on the interval ].,[ maxmin rr  The ensemble-averaged expansion coefficients
can be computed similarly using Eqs. (5.160)–(5.162) and (4.109)–(4.114).  However,
the necessity of keeping in computer memory large arrays containing the products of
Lorenz–Mie coefficients with different indices appearing in Eqs. (5.160)–(5.162) im-
poses a limit on the maximum size parameter max1max rkx =  that can be handled by a
given computer.  Therefore, instead of using Eqs. (5.160)–(5.162), we compute the
ensemble-averaged expansion coefficients by evaluating numerically the angular in-
tegrals in Eqs. (4.81)–(4.86) (de Rooij and van der Stap 1984).  For example,
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where jµ  and jw  are the division points and weights of a Gaussian quadrature for-
mula on the interval ],1 ,1[ +−
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is the ensemble-averaged (1,1)-element of the normalized Stokes scattering matrix
(cf. Eq. (4.74)), and );(1 Θra  is given by Eq. (5.152).  Other expansion coefficients
are computed similarly.  This numerical procedure involves computation of the ele-
ments of the normalized Stokes scattering matrix for ΘN  scattering angles and is
slower than the analytical procedure based on Eqs. (5.160)–(5.162) and (4.109)–
(4.114) by a factor of 2 (de Rooij and van der Stap 1984).  However, the numerical
procedure is applicable to significantly larger size parameters than the analytical
method, assuming that the size of the computer memory is the same in both cases.
Given the high speed of modern computers and hence the relatively low cost of the
Lorenz–Mie computations, the advantages of the numerical approach seem to
outweigh its disadvantages.  de Rooij and van der Stap (1984) showed that a good a
priori estimate for the number of quadrature division points in Eq. (5.240) is

).(2 maxmax xnN =Θ   It is more difficult to give an a priori estimate of the number rN
of quadrature division points in Eqs. (5.238), (5.239), and (5.241).  In practice, this
number should be increased in finite steps until all scattering characteristics of interest
converge within a given accuracy.

It is often convenient to approximate natural size distributions using simple ana-
lytical distribution functions.  The Lorenz–Mie code allows one to choose from the
following set of six analytical size distributions:

● the modified gamma distribution
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● the log normal distribution
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● the power law distribution
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● the gamma distribution
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● the modified power law distribution
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● the modified bimodal log normal distribution
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The constant for each size distribution is chosen such that the size distribution satis-
fies the standard normalization of Eq. (3.26).

Implicitly, particle radii in the modified gamma, log normal, gamma, and modi-
fied bimodal log normal distributions extend to infinity.  However, a finite maxr  must
be chosen in actual computer calculations.  There are two different practical interpre-
tations of a truncated size distribution.  The first assumes that maxr  is increased itera-
tively until the scattering and absorption characteristics of the size distribution con-
verge within a prescribed numerical accuracy.  In this case the converged truncated
size distribution is numerically equivalent to the distribution with .max ∞=r  In the
second interpretation, the truncated distribution with a prescribed maxr  is considered
as a specific size distribution with scattering and absorption characteristics distinctly
different from those for the distribution with .max ∞=r   Similar considerations apply
to the parameter ,minr  whose implicit value for the modified gamma, log normal,
gamma, and modified bimodal log normal distributions is zero, but in practice can be
any number smaller than .maxr   In this book, we adopt the first interpretation of a
truncated size distribution, unless explicitly indicated otherwise.  The actual numeri-
cal integration of scattering characteristics over a size distribution is achieved by sub-
dividing the entire interval ],[ maxmin rr  of particle radii into a number of equal subin-
tervals and applying a Gaussian quadrature formula with a fixed number of division
points to each subinterval.

We will see in later chapters that two important characteristics of a size distribu-
tion are the effective radius effr  and effective variance ,effv  defined by
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is the average area of the geometric projection per particle (Hansen and Travis 1974).
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effr  is simply the projected-area-weighted mean radius, whereas the dimensionless
effective variance provides a measure of the width of the size distribution.  It is
straightforward to show that for the gamma distribution with minr = 0 and ,max ∞=r  a
and b coincide with effr  and ,effv  respectively.  For the other size distributions with
specific values of minr  and maxr  the effective radius and effective variance must be
determined either analytically or numerically.

5.10.2 Input parameters of the Lorenz–Mie code

NDISTR, AA, BB, GAM:
The parameter NDISTR specifies the type of the particle size distribution.  For the
modified gamma distribution (5.242), 1,NDISTR =  ,AA α=  ,BB cr=  and =GAM
= .γ   For the log normal distribution (5.243), 2,NDISTR =  ,AA gr=  ,lnBB 2

gσ=
and GAM is ignored.  For the power law distribution (5.244), 3,NDISTR =  =AA

,effr  ,BB effv=  and GAM is ignored.  In this case the parameters R1 and R2 (see
below) are calculated from Eqs. (5.244) and (5.248)–(5.250) for given effr  and .effv

For the gamma distribution (5.245), 4,NDISTR =  ,AA a=  ,BB b=  and GAM is
ignored.  For the modified power law distribution (5.246), ,5NDISTR =  ,BB α=
and AA and GAM are ignored.  Finally, for the modified bimodal log normal distri-
bution (5.247), 6,NDISTR =  ,AA1 1gr=  ,lnBB1 1

2
gσ=  ,AA2 2gr=  ,lnBB2 2

2
gσ=

and .GAM γ=

R1 and R2:
min1R r=  and max2R r=  are the minimal and maximal radii in the size distribution for

NDISTR = 1–4 and 6.  R1 and R2 are calculated automatically for the power law dis-
tribution 3NDISTR =  with given effr  and ,effv  but they must be specified explicitly
for other distributions.  For the modified power law distribution NDISTR=5, ,0min =r

,1R 1r=  and .2R max2 rr ==

LAM:
1LAM λ=  is the wavelength of the incident light in the surrounding medium.

MRR and MRI:
mReMRR =  and mImMRI =  are the real and imaginary parts of the relative re-

fractive index.  MRI must be non-negative.

N, NP, and NK:
N is the number of equal integration subintervals on the interval [R1, R2].  NP is the
number of equal integration subintervals on the interval [0, R1] for the modified
power law distribution.  NK is the number of Gaussian division points on each of the
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integration subintervals.  In other words, NK*N=rN  for 6 ,4 ,3 ,2 ,1NDISTR = and
NK*NP)N( +=rN  for 5NDISTR =  in Eqs. (5.238), (5.239), and (5.241).

NPNA:
NPNA is the number of scattering angles at which the normalized scattering matrix is
computed.  This parameter appears in the PARAMETER statement in the subroutine
MATR.  The corresponding scattering angles are given by 180*(I–1)/(NPNA–1) (de-
grees), where I numbers the angles.  This way of choosing scattering angles can be
changed in the subroutine MATR by properly modifying the following lines,

N = NPNA
DN = 1D0/DFLOAT(N–1)
DA = DACOS(–1D0)*DN
DB = 180D0*DN
TB = –DB
TAA = –DA
DO 500 I1 = 1, N

   TAA = TAA+DA
   TB = TB+DB

and leaving the rest of the subroutine intact.  This flexibility is provided by the fact
that after the expansion coefficients s

pα p( = 1, 2, 3, 4) and s
pβ p( = 1, 2) are com-

puted by the subroutine SPHER, the scattering matrix can readily be computed for
any set of scattering angles (cf. Section 4.11).

DDELT:
DDELT is the desired numerical accuracy of computation of the elements of the nor-
malized scattering matrix.

5.10.3 Output information

R1 and R2:
For the power law size distribution 3,NDISTR =  11R r=  and 22R r=  are the mini-
mal and maximal radii, respectively, calculated for the input values of effr  and .effv

REFF and VEFF:
effREFF r=  and effVEFF v=  are the effective radius and the effective variance of the

size distribution, respectively.

CEXT and CSCA:
��= extCEXT C and ��= scaCSCA C are the ensemble-averaged extinction and scat-

tering cross sections per particle, respectively.
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>< COS and ALBEDO:
��=>< Θcos COS and ϖ=ALBEDO  are the ensemble-averaged asymmetry pa-

rameter and single-scattering albedo, respectively.

:G ><
��=>< G G  is the average projected area per particle defined by Eq. (5.250).

:V ><
��=>< V V  is the average volume per particle defined by
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Rvw:
vwRvw r=  is the volume-weighted average radius defined by
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ALPHA1, …, BETA2:
,ALPHA1(S) 1

sα=  ,ALPHA2(S) 2
sα=  ,ALPHA3(S) 3

sα=  ,ALPHA4(S) 4
sα=

,BETA1(S) 1
sβ=  and s

2BETA2(S) β=  are the expansion coefficients appearing in
Eqs. (4.75)–(4.80).

F11, F33, F12, and F34:
,11F 1a=  ,33F 3a=  ,12F 1b=  and ,34F 2b=  are the elements of the normalized Lo-

renz–Mie scattering matrix of Eq. (4.65).

5.10.4 Additional comments and illustrative example

It is important to remember that all input parameters having the dimension of length
(i.e., ,cr ,gr ,effr  a, ,1r ,2r ,1gr ,2gr )1λ  must be specified in the same units.  If these

parameters are specified, for example, in micrometers then output parameters having
the dimension of length, area, and volume are given in micrometers, square mi-
crometers, and cubical micrometers, respectively.  For given size distribution pa-
rameters, the parameters N, NP, and/or NK should be increased until convergent re-
sults are obtained for the extinction and scattering cross sections and, especially, the
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expansion coefficients and the elements of the normalized scattering matrix.
To calculate the scattering characteristics of a monodisperse particle having a ra-

dius r, one may use the following options:

AA = r
BB = 1D–1
NDISTR = 4
NK = 1
N = 1
R1 = AA*0.9999999 D0
R2 = AA*1.0000001 D0

The code has been extensively tested versus a program based on Eqs. (5.160)–
(5.162) and (4.109)–(4.114) as well as versus the codes independently written by
Hansen and Travis (1974) and de Rooij and van der Stap (1984).  Excellent
agreement has been found in all cases considered. In particular, we were able to
reproduce the numbers in Tables 2–4 of de Rooij and van der Stap to within 1±  in the
last decimals given.

To illustrate the performance of the Lorenz–Mie code, Tables 5.1 and 5.2 list the
expansion coefficients and the elements of the normalized scattering matrix for the
power law distribution (5.244) with µm6.0eff =r  and .2.0eff =v  The wavelength in
the surrounding medium is µm63.01 =λ  and the relative refractive index is

.008.0i53.1 +=m   Other output parameters are as follows: =�� extC 1.92604 ,µm2

=�� scaC 1.78033 ,µm2  =ϖ 0.924351, =�� Θcos 0.703689, µm, 0.2458301 =r  =2r
µm, 1.19417  =��G 0.626712 ,µm2  =��V 0.501369 ,µm3  =vwr 0.720000 µm,  and

=��r  0.407726 µm.   Table 5.1 demonstrates the typical behavior of the expansion
coefficients with increasing s: on average, they first grow in absolute value and then
decay to values below a reasonable numerical threshold.  The larger the particles
relative to the wavelength, the larger the maximal absolute value of the expansion
coefficients and the slower their decay (cf. Fig. 5.7).

5.11 T-matrix code for polydisperse, randomly oriented,
homogeneous, rotationally symmetric particles

The FORTRAN code for computing the far-field scattering and absorption character-
istics of a polydisperse ensemble of randomly oriented, homogeneous, rotationally
symmetric particles is based on the analytical orientation-averaging method described
in Sections 5.4–5.6 and the extended boundary condition method described in Section
5.8; it is available on the World Wide Web at http://www.giss.nasa.gov/~crmim.  This
section discusses numerical and practical aspects of T-matrix and EBCM computa-
tions, lists the input and output parameters of the code, and describes several illustra-
tive examples.
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Table 5.1.  Expansion coefficients for a power law size distribution of homogeneous
spherical particles (see text)

s        s
1α       s

2α          s
3α   s

4α     s
1β      s

2β

  0 1.00000    0.00000     0.00000     0.89795     0.00000    0.00000
  1 2.11107     0.00000     0.00000    2.17321     0.00000     0.00000
  2     2.80371    3.94496    3.70286    2.68232     – 0.11397     0.04016
  3     2.75088    3.26632    3.32478    2.86830     – 0.04919     – 0.13012
  4     2.78642    3.29211    3.08787    2.67642     – 0.11611     – 0.09967
  5     2.51483    2.71962    2.76717    2.62148     0.02311     – 0.23388
  6     2.37043    2.68850    2.53377    2.29258     – 0.08347     – 0.14514
  7     2.12491    2.19572    2.22264    2.21115     0.03711     – 0.22087
  8     1.94158    2.17567    2.05467    1.88603     – 0.07778     – 0.16015
  9     1.72589    1.74352    1.76215    1.80127     0.02696     – 0.18509
10  1.54525    1.72822    1.62493    1.50006     – 0.07066     – 0.16683
11   1.33856    1.33822    1.35592    1.40884     0.01412     – 0.14733
12   1.18264    1.32442    1.23019    1.14003     – 0.06023     – 0.16558
13   0.98046     0.97712     0.99647    1.04645     0.00414     – 0.11420
14 0.85744     0.96367     0.87607     0.81429     – 0.04833     – 0.15555
15   0.66452     0.66350     0.68361     0.72364     – 0.00131     – 0.08708
16  0.57301     0.64891     0.56980     0.53010     – 0.03585     – 0.13776
17   0.39838     0.40032     0.41870     0.44708     – 0.00135     – 0.06506
18   0.33469     0.38531     0.31822     0.29493     – 0.02181     – 0.11245
19   0.19091     0.19427     0.20871     0.22691     0.00293     – 0.04528
20   0.15885     0.18833     0.13387     0.12268     – 0.00442     – 0.07658
21  0.06616     0.06753     0.07753     0.08893     0.00548     – 0.01461
22   0.06678     0.08074     0.04492     0.04153     – 0.00413     – 0.03682
23   0.02026     0.02103     0.02698     0.03304     – 0.00277     – 0.00397
24   0.02708     0.03337     0.01144     0.01048     – 0.00297     – 0.01952
25   0.00370     0.00393     0.00553     0.00797     0.00015     – 0.00132
26 0.00906     0.01105     0.00090     0.00065     0.00137     – 0.00486
27     – 0.00088     – 0.00088     – 0.00001     0.00051     – 0.00092     0.00187
28   0.00188     0.00215    – 0.00046    – 0.00040    – 0.00097    – 0.00118
29  0.00002     0.00003     0.00006     0.00005     0.00013    – 0.00006
30  0.00001     0.00002     0.00001     0.00001     0.00001    – 0.00001
31     0.00000     0.00000     0.00000     0.00000     0.00000     0.00000
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5.11.1 Computation of the T matrix for an individual particle

Equations (5.196)–(5.199) and the respective formulas for kl
nmmnJ ′′Rg  contain several

angular and radial functions that must be computed numerically for argument values
corresponding to the quadrature division points in Eq. (5.202).  The functions )(ϑr
and )(ϑϑr  are computed analytically for a given particle shape.  An accurate and nu-
merically stable way of computing the Wigner d-functions )(0 ϑn

md  and the functions
)(ϑπ mn  and )(ϑτ mn  defined by Eqs. (5.16) and (5.17) is provided by the recurrence

relations (B.22) and (B.26) supplemented by the initial values given by Eqs. (B.23)
and (B.24).  The symmetry relations (5.205)–(5.207) reduce the computational effort
by a factor of 2.

The spherical Bessel functions of the first kind, )(zjn  (where z is equal to rk1  or
rk2  and is, in general, complex), satisfy the recurrence relation (Abramowitz and

Stegun 1964):

).()(12)( 11 zjzj
z

nzj nnn −+ −+=      (5.254)

Since the upward recurrence relation for )(zjn  is unstable, we define

Table 5.2.  Elements of the normalized Stokes scattering matrix for a power law
size distribution of homogeneous spherical particles (see text)

(deg) Θ       )(1 Θa         )(3 Θa          )(1 Θb          )(2 Θb

    0 30.5485      30.5485   0.00000      0.00000
  10      17.5868      17.5325     0.11636      0.74705
  20        6.32160        6.19549     0.10722      0.51234
  30        3.17426         3.07387     0.08634      0.28530
  40             1.68979         1.59809     0.10664     0.12816
  50        0.98175        0.89795     0.10301      0.04929
  60        0.60514        0.52727     0.09051    – 0.00844
  70        0.39723       0.32358     0.07470    – 0.02873
  80        0.28182       0.21282     0.05192    – 0.03907
  90        0.21054        0.14274      0.03917    – 0.04148
100         0.16867        0.10289      0.02996    – 0.03777
110         0.14492        0.07875     0.02723    – 0.03832
120         0.13501        0.06582     0.03002    – 0.04153
130        0.14110        0.06037     0.04039    – 0.05465
140         0.17064        0.05901      0.06230    – 0.07784
150         0.23806        0.05207      0.10700    – 0.11341
160         0.34927       0.00673     0.17620    – 0.12169
170         0.38436      – 0.27524      0.16140      0.10428
180         0.76915      – 0.76915      0.00000     0.00000
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leading to the downward recurrence relation
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For |,|zn�  we have
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If maxn  is the largest n-value (cf. subsection 5.8.4), we start the downward recursion
of Eq. (5.256) at ,max nnn ′+=  where n′  depends on the maximal particle dimension

0 20 40 60 80 100 120 140
10−5

10−4

10−3

10−2

10−1

1

10

100

s

| 1
s

 |

0.6 m
3 m

α

µ

µ

Figure 5.7.  Absolute values of the coefficients s
1α  appearing in the Legendre expansion of the

phase function for power law distributions of spherical particles with µm 6.0eff =r (solid line)
and µm 3  (dotted line), ,2.0eff =v  and m = 1.53 + i0.008.  The wavelength in the surrounding
medium is µm. 63.01 =λ



5   T-matrix method and Lorenz–Mie theory 169

relative to the wavelength (and, for ,2rkz =  the relative refractive index) and is cho-
sen such that by the time n has been reduced to ,maxn  the error in )(

max
zrn  caused by

using the approximate asymptotic formula (5.257) becomes negligibly small.  We
then compute ),(zjn  using the upward recursion

)()()( 1 zjzrzj nnn −=      (5.258)

and starting at

.cos)()( 00 z
zzrzj =      (5.259)

We also use the recurrence relation

),()()]([
d
d1

1 zj
z
nzjzjz

zz nnn −= −      (5.260)

which follows from Eq. (5.254) and the formula (Abramowitz and Stegun 1964)

).()1()()(
d
d)12( 11 zjnzjnzj
z

n nnn +− +−=+      (5.261)

To compute the Hankel functions of the first kind, defined by Eq. (C.1), and their
derivative we first find the spherical Bessel functions of the first kind, as described
above, and then compute the spherical Bessel functions of the second kind using the
numerically stable upward recurrence relation

)()(12)( 11 zyzy
z

nzy nnn −+ −+=       (5.262)

and the initial values

,cos)(       ,sin)( 01 z
zzy

z
zzy −==−      (5.263)

where rkz 1=  is real.  Finally, we use the recurrence formula

),()()]([
d
d1

1 zy
z
nzyzzy

zz nnn −= −      (5.264)

derived in exactly the same way as Eq. (5.260).
As explained in subsection 5.8.3, the T matrix for rotationally symmetric particles

calculated in the particle reference frame with the z-axis along the axis of rotation is
block-diagonal, the different blocks )(PmT  corresponding to different m-values

, ..., ,1 ,0( maxnm =  where maxn  is the converged n-value defined in subsection 5.8.4).
Each block is computed separately by first calculating the respective mQ  and mQRg
matrices from Eqs. (5.180)–(5.183) and (5.186)–(5.189) and then using

.)()Rg()( 1−−= mmm P QQT      (5.265)

Using Eqs. (5.200) and (5.201) considerably shortens the computer time when m = 0.
If the scatterer has a plane of symmetry perpendicular to the axis of rotation then us-
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ing Eqs. (5.203)–(5.209) and restricting the integration in Eqs. (5.196)–(5.199) to
],0,1[cos −∈ϑ  with subsequent doubling of the result, further reduce the computa-

tional effort.  The numerical stability and accuracy of the EBCM computations for
particles with piecewise smooth surfaces, such as finite circular cylinders and oscu-
lating spheres, is improved by using special integration schemes that apply separate
Gaussian quadratures to each smooth section (Barber and Hill 1990; Mishchenko et
al. 1996a).  The matrix inversion in Eq. (5.265) is performed using either standard
Gaussian elimination with partial pivoting (Forsythe et al. 1977) or the special form
of the LU-factorization method (Wielaard et al. 1997).  As described in subsection
5.8.4, the latter provides much improved results for nonabsorbing or weakly absorb-
ing particles.  The matrices 1)( −

mQ  and mQRg  can be computed using either double-
precision or extended-precision floating-point FORTRAN variables.  As explained in
subsection 5.8.4, the latter type of variable enables the code to handle significantly
larger and/or more aspherical particles, albeit at the expense of increased computer
time. 

An important part of the code is the convergence procedure which checks whether
the size of the T matrix and the number GN  of quadrature division points in Eq.
(5.202) are sufficiently large that the scattering and absorption characteristics of inter-
est are computed with the desired numerical accuracy (Mishchenko 1993).  The pro-
cedure generates two -maxn values: maxn  and .~

maxn   The first, ,maxn  is used to com-
pute the matrices ,mQ  ,Rg mQ  and ),(PmT  whereas the second, ,~

maxn  is used in the
analytical orientation-averaging procedure described in Sections 5.4–5.6 and deter-
mines the maximal value of m.  The fact that max

~n  is often significantly smaller than
maxn  means that a relatively large -maxn value is required to accurately invert the mQ

matrices, whereas only a small number of leading T-matrix elements contribute to the
orientation-averaged optical cross sections and scattering matrix elements.  The code
finds a reliable a priori estimate of both maxn  and max

~n  using only the zeroth block,
),(0 PT  of the T matrix.  maxn  is increased in unit steps until the convergence criterion

∆1.0
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is satisfied; here
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and ∆  is the required absolute accuracy of computing the expansion coefficients in
Eqs. (4.75)–(4.80).  The parameter max

~n  is then found as the smallest positive integer
that ensures the inequality
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After maxn  has been determined, GN  in Eq. (5.202) is increased until )( max1 nC  and
)( max2 nC  converge within .1.0 ∆   The initial -GN value is chosen as a multiple of

;maxn  the integer multiplicity factor NDGS is an important numerical parameter that
must be optimized for each particle shape (see subsections 5.11.4 and 5.11.7).

5.11.2 Particle shapes and sizes

Although the T-matrix code can be easily tuned to handle essentially any rotationally
symmetric shape, the current version of the code is directly applicable to spheroids, finite
circular cylinders, and Chebyshev particles.  Spheroids are formed by rotating an ellipse
about its minor axis (oblate spheroid) or major axis (prolate spheroid) (Fig. 5.8).   Their
shape is described by the equation

,cos sin )(
21

2
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��
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�
+= ϑϑϑ

b
aar      (5.270)

where b is the rotational (vertical) semi-axis and a is the horizontal semi-axis.  The
shape and size of a spheroid can be conveniently specified by the axis ratio ba  and
the radius sr  of a sphere having the same surface area.  The axis ratio is greater than 1
for oblate spheroids, smaller than 1 for prolate spheroids, and equal to 1 for spheres.
Alternatively, one may use the axis ratio and the radius vr  of a sphere having the
same volume.

▲ ▲ ▲ ▲ ▲▲ ▲▲

●

▲

 3 (− 0.15)

▲ ▲ ▲ ▲ ▲

Oblate spheroid Prolate
spheroid

Oblate cylinder Prolate
cylinder

Bisphere Bisphere

Chebyshev particles

T  3 (0.15)T (T8 0.1)(−T8 0.1) Generalized
Chebyshev

particle

Osculating
spheres

Figure 5.8.  Typical rotationally symmetric shapes that can be handled by the T-matrix codes.
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Similarly, the shape and size of a finite circular cylinder (cf. Fig. 5.8) can be
specified fully by the ratio of the diameter to the length, ,LD  and the surface-
equivalent-sphere radius sr  (or the volume-equivalent-sphere radius ).vr   Note that

LD  is smaller than 1 for prolate cylinders, equal to 1 for compact cylinders, and
greater than 1 for oblate cylinders.

A Chebyshev particle is obtained by continuously deforming a sphere by means of a
Chebyshev polynomial of degree n (Wiscombe and Mugnai 1986).  Its shape is given by

 ,1||       ,)](cos1[)( 0 <+= ξϑξϑ nTrr      (5.271)

where 0r  is the radius of the unperturbed sphere, ξ  is the deformation parameter, and
ϑϑ nTn cos)(cos =  is the Chebyshev polynomial of degree n (see Fig. 5.8, in which

the different Chebyshev particles are indicated by the notation ).)(ξnT   All Che-
byshev particles with 2≥n  become partially concave as the absolute value of the
deformation parameter increases and exhibit surface roughness in the form of waves
running completely around the particle.  Since the number of waves increases linearly
with increasing n, the latter can be called the waviness parameter.  The shape and size
of a Chebyshev particle can be specified by the couplet },{ srξ  (or by }).,{ vrξ

5.11.3 Orientation and size averaging

After the T matrix for a specific shape and equivalent-sphere radius r has been com-
puted, the orientation-averaged extinction, ,)(ext �� rC  and scattering, ,)(sca �� rC  cross
sections per particle and the coefficients )(rs

pα p(  = 1, 2, 3, 4) and )(rs
pβ p(  = 1, 2)

for identical particles in random orientation are calculated using Eqs. (5.107), (5.141),
(5.126)–(5.130), and (4.109)–(4.114). Averaging over sizes is performed using
straightforward numerical integration:
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where )(rn  is an appropriate normalized distribution of equivalent-sphere radii.  The
use of analytical size distribution functions in actual computer calculations was dis-
cussed in subsection 5.10.1.

After the extinction and scattering cross sections and the expansion coefficients
have been calculated, all other cross sections, the single-scattering albedo, the asym-
metry parameter, and the elements of the normalized Stokes scattering matrix for an
arbitrary set of scattering angles are found from Eqs. (4.43)–(4.45), (4.75)–(4.80), and
(4.92).  The Wigner d-functions appearing in expansions (4.75)–(4.80) are calculated
using the recurrence relation (B.22) and initial values given by Eqs. (B.23) and
(B.24).

5.11.4 Input parameters of the code

ICHOICE:
If ICHOICE = 1, then the code computes the inverse matrix 1−Q  using the special
LU-factorization scheme.  If ICHOICE = 2, the inverse matrix is computed using the
standard Gauss elimination procedure with partial pivoting.  The execution time is
roughly the same in both cases, but the LU-factorization procedure allows computa-
tions for significantly larger particles in the case of weak or no absorption (i.e., small
or zero imaginary part of the relative refractive index).

RAT:
If RAT = 1, the size of the nonspherical particles is specified in terms of the equal-
volume-sphere radius .vr  If RAT ≠ 1, the size is specified in terms of the surface-
equivalent-sphere radius .sr

NDISTR, AXI, B, GAM, NPNAX, AXMAX:
The parameter NDISTR specifies the type of the particle size distribution.  For the
modified gamma distribution (5.242), 1,NDISTR =  ,AXI α=  ,B cr=  and =GAM

.γ  For the log normal distribution (5.243), 2,NDISTR =  ,AXI gr=  ,lnB 2
gσ=  and

GAM is ignored.  For the power law distribution (5.244), 3,NDISTR =  =AXI  ,effr
,B effv=  and GAM is ignored.  In this case the parameters R1 and R2 (see below) are

calculated from Eqs. (5.244) and (5.248)–(5.250) for given effr  and .effv   For the
gamma distribution (5.245), 4,NDISTR =  ,AXI a=  ,B b=  and GAM is ignored.
Finally, for the modified power law distribution (5.246), ,5NDISTR =  =B  ,α  and
AXI  and GAM are ignored.  The code computes NPNAX size distributions of the same
type and with the same values of B (and GAM for NDISTR = 1) in one run.  The pa-
rameter AXI varies from AXMAX down to AXMAX/NPNAX in steps of
AXMAX/NPNAX.  If only one size distribution is needed, NPNAX is set to 1 and
AXMAX is set equal to AXI of this size distribution.
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R1 and R2:
min1R r=  and max2R r=  are the minimal and maximal radii of the size distribution

for NDISTR = 1–4.  R1 and R2 are calculated automatically for the power law distri-
bution 3NDISTR =  with given effAXI r=  and ,B effv=  but must be explicitly
specified for other distributions after the statements

DO 600 IAX = 1, NPNAX
AXI = AXMAX – DAX * DFLOAT(IAX – 1)

in the main program.  For the modified power law distribution NDISTR = 5, ,0min =r
,1R 1r=  and .2R max2 rr ==

NKMAX:
This parameter determines the number rN of Gaussian quadrature points in Eqs.
(5.272)–(5.275).  NKMAX is an integer such that NKMAX + 2 is the number of
quadrature points on the interval [R1, R2] (and on the interval [0, R1] for NDISTR =
5) for particles with AXI = AXMAX.  For particles with AXI = AXMAX –
AXMAX/NPNAX, AXMAX – 2*AXMAX/NPNAX, etc., the number of Gaussian
division points decreases linearly.

LAM:
1LAM λ=  is the wavelength of the incident light in the surrounding medium.

MRR and MRI:
mReMRR =  and mImMRI =  are the real and imaginary parts of the relative re-

fractive index, respectively.  MRI must be non-negative.

EPS and NP:
These parameters specify the particle shape (cf. subsection 5.11.2).  For spheroids,
NP = –1, and EPS = ba  is the ratio of the horizontal to the rotational semi-axes.  For
circular cylinders, NP = –2 and EPS = LD  is the diameter-to-length ratio.  For Che-
byshev particles, NP, which must be positive, is the degree of the Chebyshev poly-
nomial n in Eq. (5.271), while EPS = ξ  is the deformation parameter.

DDELT:
This parameter enters the convergence criteria of Eqs. (5.266) and (5.269) and specifies
the required numerical accuracy of the T-matrix calculations.

NPNA:
NPNA is the number of scattering angles at which the scattering matrix is computed.
The corresponding scattering angles are given by 180*(I–1)/(NPNA–1) (in degrees),
where I = 1, …, NPNA numbers the angles.  This way of choosing scattering angles
can be readily changed in the subroutine MATR (see subsection 5.10.2).
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NDGS:
This integer parameter controls the initial value of the number GN  of Gaussian divi-
sion points in the numerical evaluation of the integrals over the particle surface (cf.
Eq. (5.202) and subsection 5.11.1)).  For compact particles, the recommended value
of NDGS is 2.  For highly aspherical particles, larger values (NDGS = 3, 4, ...) may
be necessary to obtain convergence (cf. subsection 5.11.7).  Although the code checks
the convergence over the number of Gaussian division points GN  (cf. subsection
5.11.1), it does not check the convergence over the initial value of ,GN  which is
equal to the product of maxn  and NDGS.  Therefore, too small a value of NDGS may
cause false convergence in some cases, especially for highly elongated or flattened
particles, and control comparisons of results obtained with different NDGS values are
recommended.

5.11.5 Output information

R1 and R2:
For the power law size distribution 3),(NDISTR =  11R r=  and 22R r=  are the
minimal and maximal radii, respectively, calculated for the input values of effr  and

.effv

REFF and VEFF:
effREFF r=  and effVEFF v=  are the effective radius and the effective variance of the

size distribution, respectively.

CEXT and CSCA:
��= extCEXT C  and ��= scaCSCA C  are the orientation- and size-averaged extinction

and scattering cross sections per particle, respectively.

>< COS  and W:
��=>< Θcos COS  and ϖ=W  are the orientation- and size-averaged asymmetry

parameter and the single-scattering albedo, respectively.

ALPHA1, …, BETA2:
,ALPHA1(S) 1

sα=  ,ALPHA2(S) 2
sα=  ,ALPHA3(S) 3

sα=  ,ALPHA4(S) 4
sα=

,BETA1(S) 1
sβ=  and s

2BETA2(S) β=  are the coefficients appearing in the expan-
sions (4.75)–(4.80).

F11, F22, F33, F44, F12, and F34:
,11F 1a=  ,22F 2a=  ,33F 3a=  ,44F 4a=  ,12F 1b=  and 234F b=  are the elements

of the normalized Stokes scattering matrix (4.51).
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5.11.6 Additional comments and recipes

The input parameters ,cr  ,gr  ,effr  a, ,1r  ,2r  and 1λ  must be specified in the same

units of length.  If these parameters are specified, for example, in micrometers then
the extinction and scattering cross sections generated by the code are given in square
micrometers.

The physical correctness of the numerical results is tested using inequalities derived
by van der Mee and Hovenier (1990).  Although the message that the test of van der Mee
and Hovenier is satisfied does not guarantee the correctness of the results, the message
that the test is not satisfied means that the results are likely to be wrong.

The required execution time rapidly increases with increasing values of the ratio ra-
dius/wavelength and/or with increasing particle asphericity.  This should be taken into
account in planning massive computations.  The use of an optimizing compiler on IBM
RISC workstations has been found to save about 70% of computer time compared with
unoptimized code.

Execution can be automatically terminated if dimensions of certain arrays are not
large enough.  In all cases, a message appears explaining the cause of termination.
The message “WARNING: NGAUSS = NPNG1” means that convergence over the
parameter GN  cannot be obtained for the NPNG1 value specified in the
PARAMETER statement.  Often, however, this does not indicate a serious problem,
especially for compact particles.

Larger and/or more aspherical particles may require larger values of the parameters
NPN1, NPN4, and NPNG1.  It is recommended that the relations NPN1 = NPN4 + 25
and NPNG1 = (NDGS+1)*NPN1 be maintained.  Note that the memory requirement
increases as the third power of NPN4.  If the memory of a computer is too small to ac-
commodate the code in its current setting then the parameters NPN1, NPN4, and NPNG1
should be reduced.  However, this will decrease the maximal particle size parameter that
can be handled by the code.

In some cases any increase of NPN1 will not make the T-matrix computations con-
vergent.  This means that the particle is too extreme in terms of size parameter and/or
aspect ratio for a given value of the relative refractive index.  The main program contains
several PRINT statements which are currently commented out.  If uncommented, these
statements will produce the ratios that enter the convergence criteria of Eqs. (5.266) and
(5.269) and can be used to determine whether the T-matrix computations for given parti-
cle parameters will converge at all.

The recommended value of the parameter DDELT is 0.001 (Mishchenko 1993) be-
cause larger values can generate false convergence.  The message “WARNING: W IS
GREATER THAN 1” means that the single-scattering albedo exceeds the maximal pos-
sible value, unity.  If W is greater than 1 by significantly more than DDELT, this mes-
sage can be an indication of numerical instability caused by extreme values of particle
parameters.
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Some of the common blocks are used to save memory rather than to transfer data.
Therefore, if a compiler generates a warning message that the lengths of a common block
are different in different subroutines, this is not a manifestation of a programming error.

In computations for spheres, one should use EPS = 1.000001 instead of EPS = 1 be-
cause the use of EPS = 1 can cause overflows in some rare cases.  To calculate scattering
by a monodisperse particle in random orientation, one may use the options

NPNAX = 1

AXMAX = r

B = 1D–1

NKMAX = –1

NDISTR = 4

�

DO 600 IAX = 1, NPNAX

AXI = AXMAX – DAX*DFLOAT(IAX–1)

R1 = 0.9999999*AXI

R2 = 1.0000001*AXI

�

where r is the equivalent-sphere radius.
When there is no definite preference for a specific size distribution, we recom-

mend using the power law or the modified power law size distribution rather than the
gamma, modified gamma, or log normal distributions, because this can render con-
vergent solutions for larger effr  and effv  values (Mishchenko and Travis 1994c).  If
results for many different size distributions are required and the relative refractive
index is fixed, then an alternative approach can be more efficient than running this
code many times.  Specifically, scattering results should be computed for monodis-
perse particles with sizes ranging from essentially zero to some maximal value with a
small step size.  The results should be stored on disk and then can be used along with
spline interpolation to compute the scattering characteristics of particles with inter-
mediate sizes and to evaluate numerically the integrals in Eqs. (5.272)–(5.275).
Scattering patterns for monodisperse nonspherical particles in random orientation are
smoother than those for monodisperse spheres (e.g., Mishchenko and Travis 1994b
and Section 10.1), and spline interpolation usually produces satisfactory results.  In
this way, averaging over any new size distribution can be a matter of a few seconds of
computer time.
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5.11.7 Illustrative examples

As for all exact techniques for calculating electromagnetic scattering by nonspherical
particles, the performance of the T-matrix code depends on the numerical options
used and particle characteristics such as shape, size parameter, and relative refractive
index.  Table 5.3 shows the values of the maximum convergent surface-equivalent-
sphere size parameter 1ss 2 λπrx =  for monodisperse oblate spheroids with relative
refractive index 1.311 and axis ratios ba  varying from 3/2 to 20.  The results are
obtained for DDELT = 0.001 using the extended-precision version of the T-matrix
code and the LU-factorization matrix inversion scheme.  Note that the maximal size
parameter 12 λπaxa =  measured along the major semi-axis a can be significantly
larger than the maximal surface-equivalent-sphere size parameter, especially for
highly flattened spheroids.  Table 5.3 also shows the respective values of the pa-
rameter NDGS, which controls the initial number of Gauss points in Eq. (5.202).
Table 5.4 is analogous to Table 5.3, but is computed for prolate spheroids and shows
the major-axis size parameter 12 λπbxb =  rather than .ax   It is clear that the maxi-
mal convergent size parameters strongly depend on the spheroid axis ratio and sig-
nificantly increase as the particles become less aspherical.  Tables 5.3 and 5.4 also
demonstrate that converged computations for highly flattened and elongated sphe-
roids may require large values of the parameter NDGS.  Table 5.5 shows that the
maximal convergent size parameters also depend on the particle relative refractive
index and can significantly decrease with increasing Rm  and/or .Im   Table 5.6 dem-
onstrates the advantage of using extended-precision instead of double-precision com-
puter arithmetic and using the special LU-factorization-based matrix inversion proce-
dure in place of the traditional Gauss elimination scheme with partial pivoting.  Fi-
nally, comparison of Tables 5.6 and 5.7 shows that although cylinders are particles
with sharp rectangular edges, they can be handled by the T-matrix code almost as
efficiently as smooth spheroids with a similar aspect ratio.

Table 5.3.  Maximal convergent size parameters sx  and ax  and the respective NDGS
values in extended-precision EBCM calculations for monodisperse oblate spheroids
with relative refractive index 1.311 and axis ratios ba  varying from 23  to 20

ba sx ax NDGS

20       12       17     30
10       17       24       15
  5       27       37          5
  3       42       54               4
  2       92   111           3

23 > 160 > 180           2
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Extensive comparisons of EBCM results with results generated by the separation
of variables method for spheroids have shown that (i) the internal convergence of
EBCM computations with increasing maxn  is a reliable indication of their absolute
convergence, and (ii) the EBCM is capable of producing very accurate numbers suit-

Table 5.4.  Maximal convergent size parameters sx   and bx  and the respective NDGS
values in extended-precision EBCM calculations for monodisperse prolate spheroids
with relative refractive index 1.311 and axis ratios ba  varying from 32  to 201

ba sx bx NDGS

201           3         15        30

101           7       25        25

51           14       35        10

31        30       57            5

21           73   112            2

32   > 150 > 194            2

Table 5.5.  Maximal convergent size parameters sx  and ax  and the respective NDGS
values in extended-precision EBCM calculations for monodisperse oblate spheroids with
axis ratio 3=ba  and varying relative refractive index

Refractive index sx ax NDGS

1.311 42 54               4
1.53 + i0.008 38 48               4
1.78 + i0.005 32 41               4
2 + i0.6 25 32               4

Table 5.6.  Maximal convergent size parameter sx  versus axis ratio ba  in different
types of EBCM computations for monodisperse oblate spheroids with relative refractive
index 1.311

Extended precision Double precision Double precision
ba LU-factorization LU-factorization Gauss elimination

20       12                     4             4
10       17                    7                          5
  5      27            12                  7
  3      42                19             10
  2      92                38             14

23          > 160                97            24
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able for use as benchmarks in testing the performance of other theoretical as well as
experimental techniques (Kuik et al. 1992; Hovenier et al. 1996).  Benchmark num-
bers for randomly oriented spheroids, circular cylinders, and Chebyshev particles
have been published by Mishchenko (1991a), Kuik et al. (1992), Mishchenko et al.
(1996a), and Wielaard et al. (1997).  They cover the range of equivalent-sphere size
parameters from a few units up to 60 and are given with up to nine correct decimals.

To supplement the existing set of benchmark results, we list in Table 5.8 the ex-
pansion coefficients s

pα  p( = 1, 2, 3, 4) and s
pβ p(  = 1, 2) and in Table 5.9 the ele-

ments of the normalized Stokes scattering matrix for a polydispersion of randomly
oriented oblate spheroids with an aspect ratio of 1.8 and a relative refractive index of

.008.0i53.1 +  The size distribution is given by Eq. (5.244); 1r  and 2r  correspond to
the effective surface-equivalent-sphere radius µm6.0eff =r  and the effective variance

.2.0eff =v   The wavelength of the incident light in the surrounding medium is
µm. 63.01 =λ  The integrals in Eqs. (5.272)–(5.275) were evaluated using 500 Gauss

quadrature points.  Other output parameters are as follows:

=�� extC 1.87101 ,µm2 =�� scaC 1.73760 ,µm2

=ϖ 0.928698, =�� Θcos 0.702091,

µm, 0.2458301 =r µm. 1.1941702 =r

The entire calculation took five minutes on an IBM RISC model 397 workstation.  All
output numbers are expected to be accurate to within 1±  in the last decimals given.

5.12 T-matrix code for a homogeneous, rotationally
symmetric  particle in an arbitrary orientation

The FORTRAN T-matrix code for computing the amplitude and phase matrices for a
homogeneous rotationally symmetric particle in an arbitrary orientation is available

Table 5.7. Maximal convergent size parameter sx versus diameter-to-length ratio LD
in different types of EBCM computations for monodisperse oblate cylinders with relative
refractive index 1.311

Extended precision Double precision Double precision
LD LU-factorization LU-factorization Gauss elimination

20 7    1.5   0.8
10   13 3      0.9
5   24 10   1.2
3   43 17 5
2   70 30 12
1 > 180 93 21
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Table 5.8.  Expansion coefficients for a power law size distribution of homogeneous,
randomly oriented oblate spheroids (see text)

s        s
1α       s

2α          s
3α   s

4α     s
1β      s

2β

  0     1.00000     0.00000     0.00000     0.89928     0.00000     0.00000
  1   2.10627     0.00000     0.00000     2.14323     0.00000     0.00000
  2     2.79060     3.87999     3.71405     2.77094     – 0.05078     0.11537
  3     3.00175     3.43981     3.37319     2.99128     – 0.09531     – 0.16185
  4     2.83538     3.40580     3.34945     2.82333     – 0.04264     – 0.10973
  5     2.60924     2.83160     2.81673     2.63846     – 0.02124     – 0.12877
  6     2.39351     2.67150     2.60857     2.38094     – 0.04844     – 0.15852
  7     2.12900     2.26075     2.23342     2.13666     – 0.00214     – 0.15971
  8     1.89793     2.05330     2.02056     1.90065     – 0.02984     – 0.13873
  9     1.67405     1.75096     1.72982     1.68165     – 0.01212     – 0.14309
10     1.47871     1.57690     1.54673     1.47595     – 0.02144     – 0.13788
11     1.27239     1.32218     1.31043     1.28250     – 0.01149     – 0.11999
12     1.10939     1.17407     1.14826     1.10498     – 0.01821     – 0.12428
13     0.92807     0.96196     0.95375     0.93662     – 0.01070     – 0.10080
14     0.79349     0.83674     0.81484     0.78766     – 0.01320     – 0.10570
15     0.64122     0.66391     0.65900     0.64845     – 0.00874     – 0.07936
16     0.53774     0.56598     0.54728     0.53055     – 0.00853     – 0.08365
17     0.41897     0.43337     0.43096     0.42479     – 0.00687     – 0.05712
18     0.34603     0.36382     0.34899     0.33914     – 0.00630     – 0.06120
19     0.25939     0.26825     0.26772     0.26439     – 0.00693     – 0.03890
20     0.21083     0.22196     0.21000     0.20432     – 0.00589     – 0.04365
21     0.14967     0.15492     0.15512     0.15334     – 0.00643     – 0.02593
22     0.11751     0.12443     0.11526     0.11193     – 0.00501     – 0.02989
23     0.07529     0.07824     0.07872     0.07778     – 0.00506     – 0.01639
24     0.05545     0.05944     0.05252     0.05057     – 0.00289     – 0.01953
25     0.02894     0.03041     0.03051     0.02993     – 0.00154     – 0.00847
26     0.01933     0.02088     0.01713     0.01637     – 0.00062     – 0.00899
27     0.00773     0.00822     0.00802     0.00776     0.00028     – 0.00288
28     0.00451     0.00492     0.00380     0.00359     0.00015     – 0.00236
29     0.00144     0.00154     0.00138     0.00130     0.00024     – 0.00066
30     0.00069     0.00074     0.00049     0.00046     0.00008     – 0.00035
31     0.00017     0.00018     0.00014     0.00013     0.00004     – 0.00009
32     0.00010     0.00011     0.00003     0.00003     0.00003     – 0.00004
33     0.00001     0.00001     0.00001     0.00001     0.00000     0.00000
34     0.00000     0.00000     0.00000     0.00000     0.00000     0.00000
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on the World Wide Web at http://www.giss.nasa.gov/~crmim.  Many relevant aspects
of T-matrix computations were discussed in the preceding section.  Therefore, below
we mostly focus on issues specific to particles in a fixed orientation, list the input and
output parameters of the code, and provide several benchmark results.

The general scheme for computing the single-particle T-matrix in the particle ref-
erence frame having its z-axis along the axis of particle symmetry was described in
subsection 5.11.1.  The only difference is that now the parameter max

~n  is ignored, so
that the maximal value of m is equal to maxn  and the entire T-matrix is used in am-
plitude and phase matrix computations.

The current version of the T-matrix code is directly applicable to spheroids, finite
circular cylinders, Chebyshev particles, and so-called generalized Chebyshev particles
(Fig. 5.8).  The latter are described by the expansion
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and are often used to model the shape of distorted falling raindrops (Chuang and
Beard 1990).  The size of either type of particle is specified by the surface-equivalent-
sphere radius sr  or the volume-equivalent-sphere radius .vr

The orientation of a scattering particle with respect to the laboratory reference

Table 5.9.  Elements of the normalized Stokes scattering matrix for a power law
size distribution of homogeneous, randomly oriented oblate spheroids (see text)

(deg) Θ       )(1 Θa )(2 Θa )(3 Θa )(4 Θa )(1 Θb )(2 Θb

    0    30.8948    30.8569    30.8569    30.8190      0.0000     0.0000
  10    17.7021    17.6717    17.6513    17.6282    0.0837       0.5816
  20         6.7304         6.7047         6.6468         6.6343       0.0846       0.4295
  30         3.1470         3.1251         3.0620         3.0572       0.0839       0.2200
  40         1.5974         1.5778         1.5155         1.5151       0.0859       0.1116
  50         0.8639         0.8454         0.7853         0.7872       0.0786       0.0365
  60         0.5079          0.4895         0.4320         0.4353       0.0670    – 0.0069
  70         0.3337         0.3146         0.2566         0.2614       0.0529    – 0.0356
  80         0.2529         0.2319         0.1686         0.1755       0.0382    – 0.0585
  90         0.2244         0.1997         0.1242         0.1338       0.0244    – 0.0833
100         0.2255         0.1947         0.1037         0.1166       0.0085    – 0.1089
110         0.2344         0.1963         0.0941         0.1106    – 0.0111    – 0.1256
120         0.2318         0.1870         0.0862         0.1063    – 0.0267    – 0.1192
130         0.2137         0.1647         0.0724         0.0956    – 0.0271    – 0.0927
140         0.1924         0.1415         0.0499         0.0753    – 0.0107    – 0.0665
150         0.1780         0.1281         0.0210         0.0464       0.0120    – 0.0512
160         0.1652         0.1222       – 0.0109         0.0103       0.0295    – 0.0306
170         0.1610         0.0994      – 0.0658      – 0.0187       0.0161       0.0319
180         0.2876         0.1526      – 0.1526      – 0.0176       0.0000       0.0000
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frame is specified by the Euler angles of rotation ),,( γβα  that describe the trans-
formation of the laboratory reference frame into the particle reference frame (cf. Sec-
tion 2.4).  Since the particle is assumed to be rotationally symmetric, the amplitude
scattering matrix with respect to the laboratory reference frame is given by Eq. (2.72)
with .0=γ   The formulas for computing the amplitude scattering matrix with respect
to the particle reference frame follow from Eqs. (5.11)–(5.17) and (5.36)–(5.37):
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The angular functions )(ϑπ mn  and )(ϑτ mn  defined by Eqs. (5.16) and (5.17) are
found from recurrence relations (B.22) and (B.26) and initial conditions (B.23) and
(B.24).  After the amplitude matrix with respect to the laboratory reference frame has
been computed, the phase matrix is calculated using Eqs. (2.106)–(2.121).
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The T-matrix code has the following input parameters.

ICHOICE:
If ICHOICE = 1 then the code computes the inverse matrix 1−Q  using the special
LU-factorization scheme.  If ICHOICE = 2, the inverse matrix is computed using the
standard Gauss elimination procedure with partial pivoting.

RAT:
If RAT = 1 then the size of the nonspherical particle is specified in terms of the vol-
ume-equivalent-sphere radius .vr   If RAT ≠ 1 then the size is specified in terms of the
surface-equivalent-sphere radius .sr

AXI:
AXI is the equivalent-sphere radius vr  or .sr

LAM:
1LAM λ=  is the wavelength of the incident light in the surrounding medium. LAM

must be specified in the same units of length as AXI.

MRR and MRI:
mReMRR =  and mImMRI =  are the real and imaginary parts of the relative re-

fractive index, respectively.  MRI must be non-negative.

EPS and NP:
These parameters specify the shape of the particle.  For a spheroid, NP = –1 and EPS
= ba  is the ratio of the horizontal to the rotational semi-axis.  For a circular cylinder,
NP = –2 and EPS = LD  is the diameter-to-length ratio.  For a Chebyshev particle,
NP must be positive and is the degree of the Chebyshev polynomial n in Eq. (5.271),
while EPS = ξ  is the deformation parameter.  For a generalized Chebyshev particle,
NP = –3 and the expansion coefficients entering Eq. (5.276) are specified in the sub-
routine DROP.

DDELT:
This parameter enters the convergence criterion (5.266) and specifies the required nu-
merical accuracy of the T-matrix calculations.

NDGS:
This integer parameter controls the initial value of the number GN  of Gaussian divi-
sion points in the numerical evaluation of integrals over the particle surface (cf. sub-
section 5.11.4).

ALPHA and BETA:
α=ALPHA  and β=BETA  are the Euler angles (in degrees) specifying the orien-

tation of the axially symmetric particle with respect to the laboratory reference frame.
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THET0, PHI0, THET, and PHI:
The angles ,THET0 inc

Lϑ=  ,PHI0 inc
Lϕ=  ,THET sca

Lϑ=  and scaPHI Lϕ=  (in degrees)
specify the incidence and scattering directions with respect to the laboratory reference
frame (cf. Section 2.4).

The parameters ALPHA, BETA, THET0, PHI0, THET, and PHI are specified at
the end of the main program before the line

CALL AMPL (NMAX, ...)

The part of the main program following the line

C COMPUTATION OF THE AMPLITUDE AND PHASE MATRICES

can be repeated any number of times for different directions of illumination and scat-
tering and different particle orientations because by this time the )(PT  matrix for the
given scattering particle has already been computed.

As the output, the code generates the four complex-valued elements of the ampli-
tude scattering matrix )0,,;,;,( incincscasca =γβαϕϑϕϑ LLLL

LS  and the 16 real-valued
elements of the Stokes phase matrix )0,,;,;,( incincscasca =γβαϕϑϕϑ LLLL

LZ  with respect
to the laboratory reference frame.  If AXI and LAM are specified, e.g., in microme-
ters, then the dimensions of the elements of the amplitude and phase matrices are mi-
crometers and square micrometers, respectively.

To demonstrate the performance of the code, we applied it to the following four
particle models:

● prolate spheroid with ;21=ba
● prolate circular cylinder with a diameter-to-length ratio ;21
● Chebyshev particle, Eq. (5.271), with n = 4 and ;1.0=ξ
● generalized Chebyshev particle with shape given by Eq. (5.276) with N =10,

c0 = –0.0481, c1 = 0.0359, c2 = –0.1263, c3 = 0.0244, c4 = 0.0091, c5 =
0.0099,−  c6 = 0.0015, c7 = 0.0025, c8 = –0.0016, c9 = –0.0002, and c10 =

0.0010 (cf. Fig. 5.8).

The surface-equivalent-sphere radius for the first three particles and the volume-
equivalent-sphere radius for the fourth particle is 10 µm.  All particles have the same
relative refractive index, 1.5 + i0.02, and the same orientation with respect to the
laboratory reference frame, given by °= 145α  and .52°=β  The directions of the
incident and scattered beams relative to the laboratory reference frame are given by
the angles ,56inc °=Lϑ  ,114inc °=Lϕ  ,65sca °=Lϑ  and .128sca °=Lϕ  The wavelength of
the incident light in the surrounding medium is 6.283185 µm.  The respective ampli-
tude scattering matrices (with elements given in micrometers) are as follows:

,
748.24i9323.60978.3i1521.1

9971.1i9425.1402.24i0941.5
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     (5.281)
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,
401.20i088.3398.2i013.2
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     (5.284)

These numbers are expected to be accurate to within 2±  in the last decimals given.
In order to provide an additional test of the accuracy of the computer code for

particles in a fixed orientation, the authors have used it to calculate the elements of
the normalized Stokes scattering matrix for a uniform orientation distribution by first
numerically evaluating the angular integrals in Eq. (5.108) and then using Eq. (4.51).
These results were then compared with those rendered by the code based on the ana-
lytical averaging method for randomly oriented particles (Section 5.11). Since the
latter code completely avoids the evaluation of the amplitude scattering matrix for
specific particle orientations and illumination and scattering directions, it provides an
excellent independent check.  The perfect agreement that was found (to five and more
significant digits) suggests that both codes provide high numerical accuracy and can
be used in practical applications and as sources of benchmark results for testing alter-
native numerical techniques.

5.13 Superposition T-matrix code for randomly oriented
two-sphere clusters

The World Wide Web site http://www.giss.nasa.gov/~crmim provides access to a
superposition T-matrix code for computing the far-field scattering characteristics of a
monodisperse two-sphere cluster (bisphere) in random orientation, as described in
Section 5.9.  The component spheres can be identical or different in terms of their size
and relative refractive index and can be touching or separated. The T matrices of the
component spheres are diagonal, the diagonal elements being the respective Lorenz–
Mie coefficients (Eqs. (5.42)–(5.44)).  The cluster T matrix is expanded about the
geometrical center of the cluster (i.e., the center of the smallest sphere that encloses
the cluster) and is diagonalized by means of directing the z-axis of the particle coordi-
nate system along the line connecting the component sphere centers.  The mT  blocks
are computed sequentially for ),1(...,,1,0 maxnm =  where )1(maxn  is the maximal or-
der of numerically significant Lorenz–Mie coefficients for the larger sphere.  )1(maxn
and )2(maxn  for the larger and the smaller sphere, respectively, are computed as (cf.
Eq. (5.237))

,2 ,1       NODR1,05.4)( 31
max =++= ixxin ii      (5.285)
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where ix  is the size parameter of sphere i and NODR1 is an input integer parameter
(see below).  The code does not check convergence over the parameter maxn  specify-
ing the size of the cluster T matrix (subsection 5.8.4) but rather uses an a priori esti-
mate computed from

NODRT1,05.4 31
1212max ++= xxn      (5.286)

where ,2 11212 λπrx =  12r  is the distance between the centers of the component
spheres, and NODRT1 is another input integer parameter.

The code has the following input parameters.

LAM:
1LAM λ=  is the wavelength of the incident light in the surrounding medium.

R, N, and K:
,R(I) ir=  ,ReN(I) im=  and imImK(I) =  are the radius and the real and imaginary

parts of the relative refractive index, respectively, for sphere i (i = 1, 2).  K must be
non-negative.  If the spheres are of unequal size, the larger sphere must be number 1
and the smaller must be number 2.

R12:
12R12 r=  is the distance between component sphere centers.  In general, R12 ≥  R(1)

+ R(2).  Touching spheres have R12 = R(1) + R(2).

NODR1 and NODRT1:
NODR1 and NODRT1 are integers entering Eqs. (5.285) and (5.286).  Usually NODR1
= 2 and NODRT1 = 2 provide acceptable accuracy.  However, we recommend occa-
sional checks of convergence of the solution over these parameters.

NPNA:
NPNA is the number of scattering angles at which the scattering matrix is computed.
The corresponding scattering angles are given by 180*(I–1)/(NPNA–1) (in degrees),
where I = 1, …, NPNA numbers the angles.  This way of choosing scattering angles
can be readily changed in the subroutine MATR (see subsection 5.10.2).

The code provides the following output information.

CEXT and CSCA:
��= extCEXT C  and ��= scaCSCA C  are the orientation-averaged extinction and

scattering cross sections, respectively.

>< COS  and W:
��=>< Θcos COS  and ϖ=W  are the orientation-averaged asymmetry parameter

and single-scattering albedo, respectively.
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ALPHA1, …, BETA2:
,ALPHA1(S) 1

sα=  ,ALPHA2(S) 2
sα=  ,ALPHA3(S) 3

sα=  ,ALPHA4(S) 4
sα=

,BETA1(S) 1
sβ=  and s

2BETA2(S) β=  are the coefficients appearing in expansions
(4.75)–(4.80).

F11, F22, F33, F44, F12, and F34:
,11F 1a=  ,22F 2a=  ,33F 3a=  ,44F 4a=  ,12F 1b=  and 234F b=  are the elements

of the normalized Stokes scattering matrix (4.51).

The input parameters LAM, R(1), R(2), and R12 must be specified in the same
units of length.  If they are specified, for example, in micrometers then the extinction
and scattering cross sections generated by the code are given in square micrometers.
The general physical correctness of the numerical results is tested using inequalities de-
rived by van der Mee and Hovenier (1990).  The correctness and expected accuracy of
the code is also demonstrated by the following additional tests (Mishchenko and Mack-
owski 1996).

(1) T-matrix computations for a bisphere with components of different size converge
to the regular Lorenz–Mie solution for the bigger component as the size of the smaller
component approaches zero.

(2) T-matrix computations for a bisphere with increasing distance between identical
components converges to the Lorenz–Mie solution for independent spheres.  The only
exception is the direction of exact forward scattering, where the interference of light sin-
gly scattered by the bisphere components is constructive for any bisphere orientation and
nearly doubles the height of the forward-scattering phase function peak as compared to
that of a single sphere (Mishchenko et al. 1995).

(3) The computation of the T matrix for a bisphere in the particle coordinate system
with the z-axis connecting the component sphere centers requires specification of the size
parameters of the upper and lower components.  If the size parameters are different then
one has a choice of assigning the larger size parameter to the upper or to the lower
sphere.  However, the scattering results for randomly oriented bispheres must be inde-
pendent of the choice, and, indeed, the code produces the same results whatever the
choice is.  Similarly, bisphere components can have different relative refractive indices,
and, as expected, the code produces results that do not depend on assigning a particular
relative refractive index to the upper or to the lower component.

(4) For nonabsorbing particles (i.e., particles for which the imaginary part of the rela-
tive refractive index is equal to zero) the scattering and extinction cross sections must be
equal.  The code reproduces this equality with very high accuracy.

(5) The accuracy of computing the bisphere T matrix was tested by using the numeri-
cal data for a fixed bisphere orientation reported by Flatau et al. (1993), who computed
the scattered field without computing the T matrix.  Agreement of up to four significant
digits was found.

(6) Analytical T-matrix computations of the phase function and the degree of linear
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polarization for randomly oriented bispheres with touching and separated components
show agreement of up to three significant digits with the calculations of Tishkovets
(1994), who employed the standard orientation-averaging method based on numerical
angle integrations.

These tests indicate that the superposition T-matrix code is capable of producing very
accurate numerical results.  Mishchenko and Mackowski (1996) used the code to tabulate
benchmark results for the following two models:

● monodisperse, randomly oriented bispheres, with touching identical compo-
nents having size parameter 10;

● monodisperse, randomly oriented bispheres, with identical separated compo-
nents having the size parameter  5.  The distance between the sphere centers is
twice their diameter.

The relative refractive index for both models is 1.5 + i0.005.

Further reading

Bohren (1974) and He and Cao (1998) developed analytical solutions for electromag-
netic scattering by optically active (chiral) and bi-isotropic spheres, respectively.  The
computation of the Lorenz–Mie coefficients for concentric core–mantle spheres was con-
sidered by Kerker (1969), Toon and Ackerman (1981), Fuller (1993), and Kaiser and
Schweiger (1993). Mikulski and Murphy (1963), Wait (1963), Bhandari (1985), and
Mackowski et al. (1990) developed (recursive) algorithms for concentric multilayered
spheres, whereas Wyatt (1962) and Perelman (1996) studied the problem of scattering by
inhomogeneous spheres with a radially symmetric distribution of the refractive index.
The scattering and absorption of light by a sphere imbedded in an absorbing host me-
dium have been discussed by Chýlek (1977), Bohren and Gilra (1979), Bruscaglioni et
al. (1993), Quinten and Rostalski (1996), Lebedev et al. (1999), Fu and Sun (2001), and
Sudiarta and Chýlek (2001).  Gouesbet et al. (1991) developed a so-called generalized
Lorenz–Mie theory describing the scattering of an arbitrarily shaped incident beam by an
arbitrarily located homogeneous spherical particle.  The special case of a focused Gaus-
sian beam has been considered, among others, by Gouesbet et al. (1988), Barton et al.
(1989), and Lock (1995).

An interesting method for computing the T matrix for spheroids was developed by
Schulz et al. (1998a).  They first derived the T matrix in spheroidal coordinates using the
separation of variables method and then converted it into the regular T matrix in spherical
coordinates.  Mishchenko and Videen (1999) reported the results of EBCM computations
of electromagnetic scattering by randomly oriented osculating spheres.  Kahnert et al.
(2001a, b) have developed an efficient EBCM algorithm for computing the scattering
and absorption properties of finite polyhedral cylinders.

Tsang et al. (1992), Zurk et al. (1995, 1996), and Siqueira and Sarabandi (2000) used
the superposition T-matrix method to compute the extinction rate, effective permittivity,
and scattering properties of media composed of densely packed, randomly positioned
spheres.  A modified version of the superposition T-matrix approach has been applied to
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the problem of electromagnetic scattering by a particle or a cluster of particles located
above or below (with respect to the incident wave) a plane interface separating two ho-
mogeneous half-spaces with different refractive indices.  We refer the reader to the pio-
neering paper by Kristensson (1980) and recent publications by Videen (1996), Wriedt
and Doicu (1998b), Denti et al. (1999a, b), Doicu et al. (1999), and Moreno and Gon-
zález (2000), where further literature citations can be found.  Mackowski (2001) devel-
oped an approximate method to compute the T matrix for large-scale clusters of spheres
by combining the superposition T-matrix method and an effective medium theory (see
also Botet et al. 1997).  He showed that this approximation can provide accurate predic-
tions of the scattering and absorption properties of clusters containing a large number of
uniformly packed spheres using only a fraction of the computer time required for the
exact solution.  Hamid (1996) and Saija et al. (2001) simulated electromagnetic scatter-
ing by spheroids and hexagonal cylinders by applying the superposition T-matrix method
to clusters of appropriately arranged small spheres.

Appendix B of Bohren and Huffman (1983) contains a FORTRAN code for com-
puting the Lorenz–Mie coefficients for a concentric core–mantle sphere and discusses its
range of applicability.  Additional codes for multilayered spheres are listed in Flatau
(2000) and Wriedt (2000).  The World Wide Web site ftp://ftp.eng.auburn.edu/pub/
dmckwski/scatcodes/index.html provides access to two multi-sphere superposition T-
matrix codes.  The code SCSMFO is designed to calculate the Stokes scattering ma-
trix and optical cross sections for a large-scale sphere cluster in a fixed orientation
relative to the incident plane wave.  On-line documentation provides the formulation
and description of the code and a sample data input file.  The code SCSMTM calcu-
lates the T matrix of a sphere cluster and the orientation-averaged scattering matrix
and optical cross sections, as described by Mackowski and Mishchenko (1996).  The
on-line directories created and maintained by Wriedt (2000) and Flatau (2000) provide
links to several Lorenz–Mie codes for homogeneous and concentrically layered spheres,
single-particle EBCM codes, and superposition T-matrix codes for aggregated spheres
and spheres with asymmetrically located spherical inclusions.

Numerous practical applications of the T-matrix method have been reviewed by
Mishchenko et al. (1996b, 2000d).  Further applications to biophysics, geophysics, astro-
physics, and particle characterization can be found in the monographs by Lopatin and
Sid’ko (1988) and Borghese et al. (2003) and papers by Quirantes and Delgado (1995),
Borrmann et al. (1996, 2000), Doicu et al. (1997, 1998), Astafieva and Babenko (1999),
Aydin and Walsh (1999), Bantges et al. (1999), Czekala et al. (1999, 2001), Ding and Xu
(1999), Francis et al. (1999), Kouzoubov et al. (1999), Krotkov et al. (1999), Liu et al.
(1999), Petrova (1999), Porstendorfer et al. (1999), Prodi et al. (1999), Ruppin (1999),
Stubenrauch et al. (1999), Tsias et al. (1999), Vermeulen (1999), Volten et al. (1999),
Wirth et al. (1999), Carey et al. (2000), Gledhill and McCall (2000), Hogan et al. (2000),
Petrova et al. (2000), Reichardt et al. (2000a), Shvalov et al. (2000), Voshchinnikov et
al. (2000), Zrnić et al. (2000), Alpers et al. (2001), Keenan et al. (2001), Kerola and Lar-
son (2001), Prigent et al. (2001), and Vargas and Niklasson (2001).  Nieminen et al.
(2001) used the T-matrix method to compute laser trapping forces on a glass spheroid
immersed in water.

A comprehensive list of peer-reviewed T-matrix publications was compiled by Mish-
chenko et al. (2004b) and is available at http://www.giss.nasa.gov/~crmim/publications.
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Chapter 6

Miscellaneous exact techniques

All needs of a practitioner interested in light scattering by spherical particles are
served well by the Lorenz–Mie theory, whereas those interested in exact calculations
for nonspherical objects must resort to one of the more general and complex solu-
tions.  Although exact techniques for computing electromagnetic scattering by non-
spherical particles may seem to be innumerable, some of them have been re-derived
several times under different names, and most of them belong to one of two broad
categories.  Differential equation methods compute the scattered field by solving the
Maxwell or the vector wave equations, subject to appropriate boundary conditions, in
the time domain (Eqs. (1.1)–(1.4)) or in the frequency domain (Eqs. (1.17)–(1.20)).
Integral equation methods are based on the volume or surface integral counterparts of
the Maxwell equations; the boundary conditions are included in the solution auto-
matically.  A third category of methods includes hybrid techniques and methods that
can be derived using different approaches.

This chapter briefly reviews several widely used exact theoretical approaches.
Because of space limitations, the discussion here is much more concise than that in
the previous chapter on the T-matrix method and Lorenz–Mie theory.  More detailed
information on specific numerical techniques can be found in the literature cited. In
most cases we mention a recent review or a monograph providing further references.
A general updated source of information on electromagnetic scattering techniques for
nonspherical particles is the recent book edited by Mishchenko et al. (2000a).

Most theoretical methods yield the scattered electric field for a single particle in a
fixed orientation, whereas practical applications often require the knowledge of size-,
shape-, and orientation-averaged quantities such as the optical cross sections and
phase and scattering matrix elements.  Therefore, we will specifically indicate how
ensemble averaging affects the performance of a technique.  Since conventional ver-
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sions of many techniques are applicable only to homogeneous, isotropic, optically
inactive particles, we will mention explicitly possible extensions to inhomogeneous,
anisotropic, and/or chiral scatterers.  We will not discuss specifically theoretical tech-
niques for such peculiar two-dimensional scatterers as infinite cylinders because our
interest is in three-dimensional scattering by finite objects.

In what follows, scattering particles will be often characterized by: (i) the size pa-
rameter ,2 1λπax = where a is a characteristic particle size (e.g., the semi-major di-
mension or the radius of a surface- or volume-equivalent sphere) and 1λ  is the
wavelength of the incident light in the surrounding medium;  (ii) the aspect ratio ,ε
which is the ratio of the maximum to minimum particle dimensions; and (iii) the in-
dex of refraction m relative to the surrounding medium.  The efficiency of a numeri-
cal technique will be described usually in terms of its computational complexity, i.e.,
the dependence of the number of computer operations on the particle size parameter.
It should be realized, however, that although the computational complexity of two
different techniques can be proportional to the same power of the size parameter, the
respective proportionality factors can be quite different, thereby making one tech-
nique much slower than the other.

6.1 Separation of variables method for spheroids

The separation of variables method (SVM) for single, homogeneous, isotropic sphe-
roids was pioneered by Oguchi (1973), Asano and Yamamoto (1975), and Sinha and
MacPhie (1977).  With this method, the electromagnetic scattering problem is solved
for a prolate or an oblate spheroid in the respective spheroidal coordinate system by
expanding the incident, internal, and scattered fields in vector spheroidal wave func-
tions (Flammer 1957).  The expansion coefficients of the incident field are computed
analytically, whereas the unknown expansion coefficients of the internal and scattered
fields are determined through the requirement of continuity of the tangential electric
and magnetic field components on the spheroid boundary (Eqs. (1.13) and (1.15)).
Because the vector spheroidal wave functions are not orthogonal on the spheroidal
surface, this procedure results in an infinite set of linear algebraic equations for the
unknown expansion coefficients, which must be truncated and solved numerically.
Farafonov (1983) (see also Voshchinnikov and Farafonov 1993) developed a version
of the SVM in which one finds separately the axisymmetric part of the solution (i.e.,
the part independent of the azimuthal angle) and the non-axisymmetric part of the
solution and uses a modified set of expansion functions.

For spheroids significantly larger than a wavelength and/or for large relative re-
fractive indices, the system of linear equations becomes large and ill-conditioned.
Furthermore, the computation of the vector spheroidal wave functions is a difficult
mathematical and numerical problem, especially for absorbing particles (i.e., those
with non-zero imaginary part of the relative refractive index).  These factors have
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limited the applicability of the SVM to equivalent-sphere size parameters less than
about 40.  Another obvious limitation of the technique is that it is applicable only to
spheroidal scatterers.  The main advantage of the SVM is that it can produce very
accurate results.  Furthermore, the version of the SVM developed by Farafonov pro-
vides numerically stable results for spheroids with extreme aspect ratios.  The com-
putational complexity of the SVM is ).()( 43 xOxO −

Various improvements of the SVM have been discussed by Asano (1979), Kurtz
and Salib (1993), Do-Nhat and MacPhie (1997), Li et al. (1998a, 2001), Eide et al.
(1999), and Qingan et al. (1999).  The SVM has been extended to core–mantle sphe-
roids by Onaka (1980), Cooray and Ciric (1992), Sebak and Sinha (1992), and Fara-
fonov et al. (1996) (see also Gurwich et al. 2000), and to optically active spheroids by
Cooray and Ciric (1993).  Schulz et al. (1998a) developed an analytical technique for
computing electromagnetic scattering by an ensemble of randomly oriented spheroids.
They first used the Asano and Yamamoto version of the SVM to compute the T ma-
trix in the spheroidal coordinate system, then converted it into a T matrix in the
spherical coordinate system, and finally used the orientation-averaging approach de-
scribed in Chapter 5.  SVM computations for homogeneous and core–mantle sphe-
roids have been reported by Asano (1979, 1983), Rogers and Martin (1979), Asano
and Sato (1980), Schaefer (1980), de Haan (1987), Stammes (1989), Voshchinnikov
and Farafonov (1994), Kim and Martin (1995), Somsikov (1996), Voshchinnikov
(1996), Il’in and Voshchinnikov (1998), Li et al. (1998b), Schulz et al. (1998b,
1999b), Ciric and Cooray (1999), Eide et al. (2000), Kang et al. (2000), and Vosh-
chinnikov et al. (2000).  Available SVM computer codes are listed in Flatau (2000)
and Wriedt (2000).  An extensive review of the SVM is provided by Ciric and Cooray
(2000).

6.2 Finite-element method

The finite-element method (FEM) is a differential equation technique that computes
the scattered time-harmonic electric field by solving numerically the vector Helm-
holtz equation subject to the standard boundary conditions (Morgan and Mei 1979;
Silvester and Ferrari 1996).  The particle is imbedded in a finite computational do-
main that is discretized into many small-volume cells called elements, with about 10
to 20 elements per wavelength.   The electric field values are specified at the nodes of
these elements and are initially unknown.  Through the requirement of the boundary
conditions, the differential equation is converted into a matrix equation for the un-
known node electric field values.  This equation is solved using, e.g., standard Gaus-
sian elimination (GE) or one of the preconditioned iterative methods such as the con-
jugate gradient method (CGM).  Because of the local nature of the differential equa-
tion, electric fields at the nodes are directly related only to their neighbors, thereby
making the resultant matrix equation sparse and banded, which significantly reduces
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the numerical effort.  The computational complexity of the FEM with sparse GE is
),( 7xO whereas that of the FEM with the CGM is only ).( 4xO   The disadvantage of

the FEM with the CGM is that computations must be repeated for each new direction
of incidence, but the number of requisite incidence directions may be reduced by ex-
ploiting symmetries of the scattering problem and the reciprocity relation.

Although scattering in the far-field zone is an unbounded-space problem, the FEM
must be implemented always in a finite computational domain in order to limit the
number of unknowns to a manageable size.  As a consequence, approximate absorb-
ing boundary conditions must be imposed at the outer boundary of the computational
domain in order to suppress wave reflections back into the domain and permit the
numerical analogs of the outward-propagating waves to exit the domain almost as it
were infinite (Mittra and Ramahi 1990).  Another approach (e.g., Volakis et al. 1998;
Sheng et al. 1998) is to couple the FEM with a surface integral equation in order to
satisfy accurately the radiation condition at infinity (i.e., to ensure the r1  decay of
the transverse component and a faster than r1  decay of the radial component of the
scattered electric field in the far-field zone; see Section 2.2).  The drawback of the
latter technique is that it can destroy the sparsity of the finite-element matrix.

Another way of enforcing the radiation condition is the so-called unimoment
method (Mei 1974; Morgan and Mei 1979; Morgan 1980).  This modification of the
FEM uses a spherical computational domain and an expansion of the scattered field
outside the computational domain in outgoing spherical wave functions with un-
known coefficients.  The total external field is the sum of this unknown expansion
and the known expansion of the incident field.  The unknown expansion coefficients
are found by applying the FEM scheme inside the computational domain and match-
ing the FEM nodal fields and the spherical wave function expansions at the boundary
of the computational domain.  The scattered field in the far-field zone is calculated by
evaluating the spherical wave function expansion and automatically satisfies the ra-
diation condition.  Since the unimoment method always uses a spherical computa-
tional domain, the volume of the domain can become much larger than the volume of
the scatterer for objects with high aspect ratios, thereby making this technique ineffi-
cient.

The important advantages of the FEM are that it can be applied to arbitrarily
shaped and inhomogeneous particles, is simple in concept and implementation, and
avoids the singular-kernel problem typical of integral equation methods (see Section
6.5).  However, FEM computations are spread over the entire computational domain
rather than confined to the scatterer itself as in the integral equation methods.  This
tends to make FEM calculations rather time consuming and limits the maximum size
parameter to values less than about 10.  Features such as the finite spatial discretiza-
tion and approximate absorbing boundary condition make the FEM unsuitable for
applications in which achieving a very high and controllable numerical accuracy is
important.  Further information about the FEM and the closely related finite-
difference method (FDM) can be found in Morgan (1990), Silvester and Ferrari
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(1996), and Volakis et al. (1998).  Several FEM computer codes are listed in Wriedt
(2000).

6.3 Finite-difference time-domain method

Unlike the FEM, the finite-difference time-domain method (FDTDM) calculates
electromagnetic scattering in the time domain by solving Maxwell’s time-dependent
curl equations (1.2) and (1.4) directly (Yee 1966).  The space and time derivatives of
the electric and magnetic fields are approximated using a finite-difference scheme
with space and time discretizations selected to constrain computational errors and
ensure numerical stability of the algorithm.  Hence, time is approximated by a se-
quence of discrete steps, and a marching-in-time procedure is used to track the evolu-
tion of the fields from their initial values at some initial time.  As in the FEM, the
scattering object is imbedded in a finite computational domain, and absorbing bound-
ary conditions are employed to model scattering in unbounded space (e.g., Berenger
1996;  Grote and Keller 1998;  Yang and Liou 1998b; Sun et al. 1999).  The fields are
specified at spatial grid points with discretization density similar to that needed for
the FEM.  Values at the grid points for the previous and current time steps are used to
calculate the values at the next time step, thereby making the system of equations to
update the fields fully explicit.  As a consequence, there is no need to solve a large
system of linear equations, and the memory-size requirement is proportional to the
total number of grid points.  The common practice of modeling scattering objects with
curved boundaries using rectangular grid cells causes a so-called staircasing effect
and increases numerical errors.  This effect becomes especially pronounced for parti-
cles with large relative refractive indices and must be reduced using special tech-
niques (Yang and Liou 1996a; Sun and Fu 2000).  The operation count grows ap-
proximately as the fourth power of the particle size parameter.  Since the FDTDM
computes the near field in the time domain, a special near-zone to far-zone transfor-
mation must be invoked in order to compute the scattered far field in the frequency
domain (Taflove 1995; Yang and Liou 1996a; Martin 1998).

The FDTDM has become rather popular recently, owing to its conceptual sim-
plicity, flexibility, and ease of implementation.  Since the method tracks the time-
varying field throughout a volume of space, FDTDM results are well suited for ani-
mation using modern computer graphics so that the user is provided with a visual
demonstration of the temporal and spatial behavior of the electromagnetic field.  The
FDTDM shares the advantages of the FEM with the CGM as well as its limitations in
terms of accuracy, computational complexity, size parameter range, and the need to
repeat all computations with changing direction of illumination.  Applications of the
FDTDM to far-field scattering computations have been described by Tang and Aydin
(1995), Aydin and Tang (1997a, b), Yang et al. (1997, 2000b), Liou et al. (1998,
2000), Videen et al. (1998b), Aydin and Walsh (1999), Drezek et al. (1999), and Fu
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et al. (1999).  Additional information on the FDTDM can be found in the monographs
by Kunz and Luebbers (1993) and Taflove (1995, 1998) and in the recent review by
Yang and Liou (2000).  Available FDTDM computer codes are listed by Wriedt
(2000).

6.4 Point-matching method

The point-matching method (PMM) is a differential equation technique based on ex-
panding the incident and internal fields in vector spherical wave functions that are
regular at the origin and expanding the scattered field outside the scatterer in outgoing
vector spherical wave functions.  The expansion coefficients of the incident field are
known (Eqs. (5.4) and (5.5)), whereas the expansion coefficients of the internal and
scattered fields are found by truncating the expansions to a finite size and matching
the fields at the surface of the scatterer via application of the boundary conditions. In
the simple PMM, the fields are matched at as many points on the surface as there ex-
ist unknown expansion coefficients (Oguchi 1973).

The general idea of the PMM is so simple and attractive that the method continues
to be reinvented (e.g., Sarkar and Halas 1997).  However, it often produces poorly
converging and unstable results.  It is possible that such behavior may be attributed to
the fact that it relies on the Rayleigh hypothesis (RH; see Section 5.1), whereas the
validity of this hypothesis is questionable.  For example, the results of Doicu et al.
(1999), Ngo et al. (1997), and Mishchenko and Videen (1999) seem to imply that the
RH may in fact be wrong.

The use of vector spherical wave functions to represent the incident, internal, and
scattered fields makes the PMM similar to the T-matrix method.  Moreover, it appears
that the RH can be used to derive the extended boundary condition method (EBCM);
see Chew (1995).  Since the EBCM is exact, this derivation has been interpreted
sometimes as evidence of the validity of the RH and of the equivalence of the RH and
the EBCM (Burrows 1969; Schmidt et al. 1998).  However, the fact that the EBCM
can be derived from the RH means only that the RH is a sufficient condition of valid-
ity of the EBCM but not a necessary condition.  The equivalence of the RH and the
EBCM and hence the validity of the RH would follow only from reciprocal derivation
of the RH from the EBCM, but this has not been accomplished so far.  Therefore, one
should not exclude the possibility that the RH may be violated despite the fact that the
EBCM is exact (Millar 1969; Lewin 1970).

A modification of the PMM called the boundary-matching method was developed
by Barton and Alexander (1991).  Instead of imposing the boundary conditions at a
finite number of distributed points, the boundary condition equations are expanded in
spherical harmonics and matched for each angular mode. This results in a set of si-
multaneous algebraic equations from which the expansion coefficients can be deter-
mined.  Since the method shows poor convergence for spheroids with aspect ratios
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larger than 1.4, Barton and Alexander concluded that it is best suited to the analysis of
near-spherical particles.

The convergence problem of the simple PMM appears to be partly ameliorated in
the generalized PMM (GPMM) by the creation of an overdetermined system of equa-
tions for the unknown expansion coefficients.  This is accomplished by matching the
fields in the least squares sense at a number of surface points significantly greater
than the number of unknowns (Morrison and Cross 1974; Oguchi and Hosoya 1974;
Al-Rizzo and Tranquilla 1995a, b).  The performance of the GPMM has been further
improved by employing multiple spherical expansions to describe the fields both in-
side and outside the scattering object (Joo and Iskander 1990; Al-Rizzo and Tran-
quilla 1995c).  This multiple-expansion GPMM (ME-GPMM) does not rely on the
RH; it is also known as the generalized multipole technique, the discrete sources
method, and the Yasuura method (Hafner 1990; Ludwig 1991; Eremin and Orlov
1998; Wriedt 1999).  It is claimed that the ME-GPMM for rotationally symmetric
scatterers is numerically stable, sufficiently accurate, and applicable to large size pa-
rameters (Al-Rizzo and Tranquilla 1995c).  Piller and Martin (1998a) extended the
ME-GPMM to anisotropic scatterers.

6.5 Integral equation methods

The interaction of a plane electromagnetic wave with an object of volume INTV  is
described fully by the volume integral equation (2.16).  The calculation of the scat-
tered field using Eq. (2.16) would be straightforward except that the internal electric
field is unknown.  Therefore, this equation must first be solved for the internal field.
The integral in Eq. (2.16) is usually approximated by discretizing the interior region
into N small cubic cells of a volume V∆  with about 10 to 30 cells per wavelength
and assuming that the electric field and the refractive index within each cell are con-
stant:
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1
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=
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where INTVi ∈r  is the central point of the ith cell.  Physically this procedure is
equivalent to representing the internal field at each point of the interior region INTV  as
a sum of the incident field and the field induced by sources at all interior points, in-
cluding the self point.  Equations (6.1) form a system of N linear algebraic equations
for the N unknown internal fields )( irE  and must be solved numerically.  Since the
internal fields interact with each other throughout the object, the resultant matrix is
full.  Once the internal fields are found, the total external field is determined from
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Finally, the scattered field is computed by subtracting the incident field from the total
external field.  This version of the volume integral equation method (VIEM) is known
as the method of moments (MOM).  Since the free space dyadic Green’s function
given by Eqs. (2.13) and (2.15) becomes singular as ,0|| →′− rr  special techniques
must be used to handle the self-interaction term )( ij =  in the sum on the right-hand
side of Eq. (6.1) (Lakhtakia and Mulholland 1993).

Several modifications of the MOM have been developed under different names:
the digitized Green’s function algorithm (Goedecke and O’Brien 1988), the volume
integral equation formulation (Iskander et al. 1989a; Hage et al. 1991; Lumme and
Rahola 1998), and the variational volume integral equation method (Peltoniemi
1996).  The main difference among these techniques is the way in which they treat the
self-interaction term.

The straightforward approach to solving the MOM matrix equation using the
standard GE entails a computational complexity of )()( 93 xONO ∝  and is not practi-
cal for size parameters exceeding unity.  The conjugate or bi-conjugate gradient
method together with the fast Fourier transform (CGM-FFT or BCGM-FFT) (Gan
and Chew 1995; Peterson et al. 1998, Chapter 4) has the computational complexity

),log()log( 331 xxONNO αα ++ ∝  where αN  with 10 << α  is the total number of
iterations required to achieve a specific accuracy; this method can be applied to sig-
nificantly larger size parameters.  Furthermore, the CGM-FFT (BCGM-FFT) and
related techniques can significantly reduce computer memory requirements.  The
standard drawback of using the CGM (BCGM) and other preconditioned iterative
techniques is that computations must be fully repeated for each new illumination di-
rection.

Another version of the VIEM is the so-called discrete dipole approximation
(DDA), otherwise known as the coupled dipole method.  Whereas the MOM deals
with the actual electric fields in the central points of the cells constituting the scatter-
ing object (Eq. (6.1)), the DDA exploits the concept of exciting field.  It is based on
partitioning a particle into a number N of elementary polarizable units called dipoles.
The electromagnetic response of the dipoles to the local electric field is assumed to be
known.  The field exciting a dipole is a superposition of the external field and the
fields scattered by all other dipoles.  This allows one to write a system of N linear
equations for N fields exciting the N dipoles.  An important way in which the DDA
matrix equation differs from the MOM matrix equation is that the former does not
contain the troublesome self-interaction term.  The numerical solution of the DDA
matrix equation is then used to compute the N partial fields scattered by the dipoles
and thereby the total scattered field.  Although the original derivation of the DDA by
Purcell and Pennypacker (1973) was heuristic, Lakhtakia and Mulholland (1993)
showed that the DDA can in fact be derived from the volume integral equation and is
closely related to the MOM.

Since the pioneering paper by Purcell and Pennypacker (1973), the DDA has been
improved by modifying the treatment of the dipole polarizability (Draine 1988;
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Dungey and Bohren 1991;  Draine and Goodman 1993;  Lumme and Rahola 1994;
Okamoto 1995), including magnetic dipole and dielectric quadrupole terms in addi-
tion to the electric dipole term (Mulholland et al. 1994; Lemaire 1997), applying the
CGM-FFT and other preconditioned iterative methods to solve the DDA matrix
equation with a )log( 33 xxO α+  computational complexity (Goodman et al. 1991;
Flatau 1997), and employing concepts of the sampling theory (Piller and Martin
1998b).  Varadan et al. (1989), Lakhtakia (1992), and Piller (1999) extended the
DDA to anisotropic, bi-anisotropic, and high-permittivity materials, respectively.  Ku
(1993) compared the numerical performance of the MOM (Iskander et al. 1989a) and
the DDA (Dungey and Bohren 1991).  Chiappetta (1980) and Singham and Bohren
(1987, 1988) developed a scattering-order formulation of the DDA.  Hoekstra et al.
(1998) investigated the performance of a DDA implementation on a parallel
supercomputer.  McClain and Ghoul (1986), Singham et al. (1986), and Khlebtsov
(2001) have developed analytical DDA procedures for computing the scattering of
light by randomly oriented particles based on re-expanding Cartesian tensor products
in terms of spherical tensor products and exploiting analytical properties of Wigner
D-functions (Appendix B).  Unfortunately, this approach involves a time-consuming
matrix inversion (computational complexity ))( 9xO  and is applicable only to parti-
cles smaller than a wavelength.  Draine and Weingartner (1996) and Kimura and
Mann (1998) used the DDA to compute the radiation force and torque on nonspheri-
cal particles and fluffy aggregates.  Hoekstra et al. (2000) extended their work by
deriving DDA formulas for computing the radiation force experienced by each dipole.

The major advantages of the MOM and DDA are that they automatically satisfy
the radiation condition at infinity (Eq. (2.24)), are confined to the scatterer itself,
thereby resulting in fewer unknowns than the differential equation methods, and can
be applied to inhomogeneous, anisotropic, and/or optically active scatterers (e.g., Su
1989; Rojas 1992).  However, the numerical accuracy of the methods is relatively
low, especially for the scattering matrix elements, and improves slowly with increas-
ing N, whereas the computer time grows rapidly with increasing size parameter
(Singham 1989; Draine and Flatau 1994; Evans and Stephens 1995; Okamoto et al.
1995).  A major source of numerical errors is the approximate representation of
smooth particle surfaces by discrete cubical dipoles (Lemke et al. 1998).  Another
disadvantage of the above techniques is the need to repeat the entire calculation for
each new direction of incidence (for the MOM and DDA with the CGM-FFT). These
factors have made MOM and DDA computations time consuming, especially for par-
ticle size, shape, and/or orientation distributions, and have limited the particle size
parameter to relatively small values.

The attractiveness and simplicity of the physical idea of the DDA and the public
availability of the well-documented DDA code by Draine and Flatau (1997) have
resulted in widespread applications of this technique during the last decade.  Further
information on the MOM and DDA and their applications can be found in Miller et
al. (1991), Wang (1991), Draine and Flatau (1994), Lumme et al. (1997), Lemke and
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Quante (1999), Murayama et al. (1999), and Draine (2000).
Equation (2.16) is a Fredholm-type integral equation with a singular kernel at

.rr =′   Holt et al. (1978) removed the singularity by applying the Fourier transform
to the internal field and converting the volume integral into an integral in wave num-
ber coordinate space.  Discretization of the latter results in a matrix equation that is
solved numerically and gives the scattered field.

The scattered field obtained with this Fredholm integral equation method (FIEM)
satisfies a variational principle and is claimed to be numerically stable and convergent
to the exact result, even for particles with large aspect ratios, albeit the size parameter
in actual computations for highly aspherical scatterers has been relatively small so far.
Numerical implementation of the technique becomes much simpler for homogeneous,
rotationally symmetric bodies.

The major limitation of the FIEM is that the matrix elements must be evaluated
analytically, thereby requiring different programs for each type of scatterer.  As a
consequence, FIEM computations have been limited to only a few model shapes such
as spheroids, triaxial ellipsoids, and finite circular cylinders (Evans and Holt 1977;
Holt et al. 1978; Holt and Shepherd 1979;  Shepherd and Holt 1983; Matsumura and
Seki 1991, 1996).  The majority of reported FIEM results pertain to size parameters
smaller than 5 and tend to be rather time consuming (Holt 1982).  Larger particles
(volume-equivalent-sphere size parameters up to 36.7) were considered by Stamata-
kos et al. (1997).  However, the relative refractive index was restricted to 1.04, and a
comparison of FIEM results for a sphere with exact Lorenz–Mie computations
showed poor agreement at scattering angles exceeding .25°

An important advantage of the FIEM is that a significant part of the calculation,
the integrals, depends only on the particle size parameter and shape.  Therefore,
changing the relative refractive index and/or the direction and polarization state of the
incident wave does not require a complete new calculation.  A similar saving of com-
puter time is achieved in performing convergence checks.  Papadakis et al. (1990) and
Karonis et al. (1999) extended the FIEM to anisotropic and chiral dielectric ellipsoids,
while Stamatakos and Uzunoglu (1997) applied the FIEM to scattering by a linear
chain of triaxial dielectric ellipsoids.

Electromagnetic scattering by homogeneous or layered dielectric bodies can be
computed using a surface integral counterpart of Eq. (2.16) (Poggio and Miller 1973;
Umashankar et al. 1986;  Medgyesi-Mitschang et al. 1994; Swatek and Ciric 2000a,
b).  Although surface integral equation methods (SIEMs) cannot be applied to highly
inhomogeneous scatterers, their important advantage is that the dimensionality of the
problem is reduced by one, and the number of unknowns N is proportional to 2x
rather than to ,3x  as in the VIEM, thereby resulting in a computational complexity of

)( 6xO  for SIEMs with the GE and )( 24 α+xO  for SIEMs with the CGM.



6   Miscellaneous exact techniques 201

6.6 Superposition method for compounded spheres and
spheroids

The separation of variables solution for a single sphere (the Lorenz–Mie theory) can
be extended to clusters of spheres by using the translation addition theorem for vector
spherical wave functions (Bruning and Lo 1971a, b; Borghese et al. 1979; Hamid et
al. 1990; Fuller 1991; Mackowski 1991). The total field scattered by a multi-sphere
cluster can be represented as a superposition of individual fields scattered from each
sphere.  These individual fields are interdependent because of electromagnetic inter-
actions between the component spheres.  The external electric field illuminating the
cluster and the individual fields scattered by the component spheres are expanded in
vector spherical wave functions with origins at the individual sphere centers.  To ex-
ploit the orthogonality of the vector spherical wave functions in the sphere boundary
conditions, one uses the translation addition theorem with a vector spherical wave
function centered at one sphere origin then re-expanded about another sphere origin
(Appendix C).  This procedure ultimately results in a matrix equation for the scat-
tered-field expansion coefficients of each sphere.  Numerical solution of this equation
for the specific direction and polarization state of the incident wave gives the individ-
ual scattered fields and thereby the total scattered field.

Alternatively, inversion of the cluster matrix equation gives sphere-centered tran-
sition matrices that transform the expansion coefficients of the incident wave into the
expansion coefficients of the individual scattered fields.  The advantage of this ap-
proach is that the individual-sphere transition matrices are independent of the direc-
tion and polarization state of the incident field.  In the far-field region, the individual
scattered-field expansions can be transformed into a single expansion centered at a
common origin inside the cluster.  This procedure gives a matrix that transforms the
incident-wave expansion coefficients into the common-origin expansion coefficients
of the total scattered field.  This matrix is completely equivalent to the cluster T ma-
trix (Borghese et al. 1984; Mackowski 1994) and can be used in the analytical aver-
aging of scattering characteristics over cluster orientations, as described in Section 5.9
(Fucile et al. 1993, 1995; Mishchenko and Mackowski 1994; Mackowski and Mish-
chenko 1996).  Therefore, the superposition method can also be considered as a par-
ticular case of the general T-matrix method for aggregated scatterers (Section 5.9) in
which the latter is applied to a cluster of spheres (Peterson and Ström 1973; Mish-
chenko et al. 1996b).

The superposition method has been extended to aggregates of concentrically lay-
ered spheres (Hamid et al. 1992), to spheres with one or more eccentrically positioned
spherical inclusions (Fikioris and Uzunoglu 1979; Borghese et al. 1992, 1994; Fuller
1995b; Mackowski and Jones 1995), and to pairs of osculating spheres (Videen et al.
1996).  Cooray and Ciric (1991) developed a superposition method for a cluster of
dielectric spheroids in an arbitrary configuration by combining the SVM solution for
individual spheroids with the use of appropriate rotational–translational addition theo-
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rems for vector spheroidal wave functions (Cooray and Ciric 1989; see also Nag and
Sinha 1995).

The computational complexity of the superposition method strongly depends on
the number of components and their size parameters and configuration.  Obtaining
converged results for a larger number of components usually necessitates smaller val-
ues for the component size parameters, and vice versa.  The superposition method is
especially efficient for linear configurations of spheres, owing to the axial symmetry
of such a configuration.  Because of the analyticity of its mathematical formulation,
this method is capable of producing very accurate results.  Fuller and Mackowski
(2000) gave a detailed review of the superposition method for compounded spheres,
while Ciric and Cooray (2000) reviewed the superposition method for systems of
spheroids.

6.7 Comparison of methods, benchmark results, and
computer codes

The very existence and use of several exact techniques for computing electromagnetic
scattering by nonspherical particles testifies that there is no single universal method
that provides the best results in all cases.  Depending on the application in hand, one
particular technique may prove to be the most appropriate in terms of efficiency, ac-
curacy, and applicability to specific particle parameters.  Moreover, it is often diffi-
cult to formulate and implement simple and objective criteria for comparing the per-
formance of different numerical techniques in a wide range of applications.  Ideally,
one should use the same type of computer and consider the same scattering problems
using codes written by authors with comparable levels of programming skills.  Even
in this idealistic situation, however, the specific characteristics of the computer used
can favorably enhance the performance of one technique and degrade the efficiency
of another.  For example, one technique may become especially efficient when im-
plemented on a parallel computer, whereas the performance of another technique may
benefit from the availability and efficient organization of double or extended preci-
sion computations.  Furthermore, direct comparisons of different techniques can face
serious organizational problems (e.g., Hovenier et al. 1996) and have always been
restricted to a few techniques and a few scattering problems (Flatau et al. 1993; Coo-
per et al. 1996; Wriedt and Comberg 1998; Comberg and Wriedt 1999; Kimura 2001;
Schuh and Wriedt 2001; Baran et al. 2001b).  Thus, it may be that the actual decision
in favor of a specific technique has often been based on indirect semi-quantitative
evidence scattered over many publications (e.g., Oguchi 1981; Holt 1982) and/or on
the availability of a well-documented public-domain computer code.

The paper by Hovenier et al. (1996) is a good example of a concerted effort to
compare the accuracy and computer-time requirements of three exact techniques: the
SVM for spheroids (Voshchinnikov and Farafonov 1993), the T-matrix method
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(Mishchenko et al. 1996b), and the DDA (Lumme and Rahola 1994).  Computations
were performed for four rotationally symmetric objects: a prolate and an oblate sphe-
roid each with aspect ratio 2, a circular cylinder with length-to-diameter ratio 2, and a
bisphere with equal touching components.  All particles had the same relative refrac-
tive index 01.0i5.1 +=m  and the same volume-equivalent-sphere size parameter

.5v =x  The orientation of the rotation axis of each particle with respect to the labo-
ratory reference frame was specified by the Euler angles ,0°=α  ,50°=β  and

°= 0γ  (Section 2.4).  The particles were illuminated by a plane electromagnetic wave
incident in the direction of the positive z-axis of the laboratory coordinate system, the
scattering directions were confined to the xz-halfplane with ,0≥x  and the compari-
son quantity was the phase matrix )0,0;0,( incincscasca === ϕϑϕϑZ  (multiplied by

,2
1k  where 1k is the wave number in the surrounding medium) as a function of the

zenith angle of the scattered light ].180,0[sca °°∈ϑ   Scattering by the prolate and ob-
late spheroids was computed using all three techniques, whereas that by the cylinder
and the bisphere was calculated using only the T-matrix method and the DDA.  The
numbers of dipoles N in the DDA representation of the scattering objects were 8320,
8664, 6656, and 8448 for the prolate spheroid, the oblate spheroid, the cylinder, and
the bisphere, respectively.  For the DDA computations, the final results were averages
over four discrete orientations of the dipole arrays about the axis of rotational sym-
metry; this approach was used to reduce the errors incurred in modeling the smooth
rotationally symmetric particles by groups of discrete dipoles.

The comparison showed that the results of the SVM and T-matrix computations
for the spheroids converged to within nine significant figures.  Since these two tech-
niques are completely independent, the excellent agreement is an indication of their
superb absolute accuracy.  The computer time and memory requirements for these
two techniques were also comparable, whereas the DDA computations were more
time consuming and less accurate. Figure 6.1 (adapted from Hovenier et al. 1996)
compares the results of T-matrix calculations (solid curves) and DDA calculations
(diamonds) of the ratio (%)1121 ZZ−  for the four scattering models considered.  It is
evident that the DDA results deviate noticeably from the T-matrix curves, although
the general trends and features are reproduced with accuracy perhaps good enough for
many practical applications.

The evidence accumulated in the published literature suggests that, besides the
Lorenz–Mie theory, the only methods capable of providing very accurate results (to
five and more correct significant figures) for particles comparable to and larger than a
wavelength are the SVM, the T-matrix method, and the superposition method.  Each
of these techniques incorporates an internal convergence test that provides a good
measure of the absolute accuracy (Kuik et al. 1992; Hovenier et al. 1996). Benchmark
results for monodisperse and polydisperse spheroids, finite circular cylinders, Che-
byshev particles, and two-sphere clusters in fixed and random orientations have been
reported by Mishchenko (1991a, 2000), Kuik et al. (1992), Hovenier et al. (1996),
Mishchenko and Mackowski (1996), Mishchenko et al. (1996a), Wielaard et al.
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(1997), and Voshchinnikov et al. (2000).  Additional benchmark cases were consid-
ered in subsection 5.11.7 and Section 5.12.  These data cover a wide range of equiva-
lent-sphere size parameters from a few units to 60 (Wielaard et al. 1997) and are
given correct up to nine significant figures.  Since these numbers are accurate to a few
units in the last digit, they provide an important tool for testing the accuracy of other
exact and approximate theoretical approaches.

The SVM, the T-matrix method, the superposition method, the GPMM, and the
ME-GPMM are the only techniques that have been used extensively in computations
for particles significantly larger than a wavelength.  The first three techniques appear
to be the most efficient methods for computing electromagnetic scattering by homo-
geneous and composite objects of revolution (i.e., having rotational symmetry).  The
availability of the analytical orientation-averaging procedure makes the T-matrix
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Figure 6.1.  The ratio 1121 ZZ−  as a function of the zenith angle of the scattering direction for
(a) a prolate spheroid, (b) an oblate spheroid, (c) a finite circular cylinder, and (d) a bisphere, as
specified in the text.  The solid curves and the diamonds depict the results of T-matrix and
DDA computations, respectively.
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method the fastest technique for randomly oriented symmetric particles (e.g., rota-
tionally symmetric particles, ellipsoids, and polyhedral cylinders) with moderate as-
pect ratios and also for randomly oriented clusters of spheres.  Scattering by particles
with larger aspect ratios can be computed with the improved version of the SVM for
spheroids developed by Farafonov (1983), the iterative EBCM (cf. subsection 5.8.4),
and the ME-GPMM.  SIEMs (e.g., Zuffada and Crisp 1997) and the FIEM can also be
applied to homogeneous, rotationally symmetric particles with large aspect ratios,
although they appear to be slower and less accurate than the other techniques.

Computations for anisotropic objects and homogeneous and inhomogeneous
asymmetric particles often may have to rely on more flexible techniques such as the
FEM, FDM, FDTDM, MOM, and DDA.  All these techniques are simple in concept
and computer implementation and appear to have comparable performance charac-
teristics (e.g., Wriedt and Comberg 1998), although often their simplicity and flexi-
bility are accompanied by a loss in efficiency and accuracy and by stronger practical
limitations on the maximal particle size parameter. Further effort is obviously re-
quired in order to develop improved exact approaches that are both efficient, flexible,
and applicable to a wide range of size parameters.

A number of software implementations of the techniques described in this chapter
are currently available, and many of them are in the public domain.  Extensive lists of
available computer codes have been compiled by Flatau (2000) and Wriedt (2000).

Further reading

Farafonov et al. (1999) developed a surface integral equation technique for homoge-
neous rotationally symmetric objects that closely resembles the EBCM but employs a
different set of functions to expand the incident, scattered, and internal fields.

Rother and Schmidt (1996) and Rother (1998) developed a differential equation
technique called the discretized Mie formalism (DMF), which solves the vector
Helmholtz equation for homogeneous scatterers using a method of lines.  The main
advantage of this method is its analytic incorporation of the radiation condition at
infinity.  Like many other exact techniques, the DMF becomes much more efficient
when the scattering object is rotationally symmetric.

Kattawar et al. (1987) found the solution of Eq. (2.16) by first solving a simpler
equation for a resolvent kernel matrix.  An attractive feature of their approach is that
the resolvent kernel matrix is computed only once for the entire range of relative re-
fractive indices.

Vechinski et al. (1994) developed a time-domain SIEM to compute the scattering
from arbitrarily shaped homogeneous dielectric bodies.  The advantage of their tech-
nique over the FDTDM is that the radiation condition at infinity is satisfied automati-
cally and the memory requirement is reduced (see also Pocock et al. 1998).

Further information on exact scattering methods can be found in the review by
Kahnert (2003), in the collection of selected papers edited by Kerker (1988), and in
special journal issues edited by Shafai (1991), Barber et al. (1994), Hovenier (1996),
Lumme (1998), Mishchenko et al. (1999a), and Videen et al. (2001).
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Chapter 7

Approximations

The practical importance of approximate theories of electromagnetic scattering and
absorption by small particles diminishes as various exact techniques mature and be-
come applicable to a wider range of problems and as computers become ever more
powerful.  This is of course especially true of spherical particles, for which the Lo-
renz–Mie theory can be used to generate accurate numerical results for essentially any
size parameter and relative refractive index.  Nonetheless, approximate theories still
remain a valuable source of physical insight into the processes of scattering and ab-
sorption of electromagnetic radiation.  Furthermore, it is likely that at least one ap-
proximation, the geometrical optics approach, will never become obsolete because its
accuracy can only improve as the particle size parameter grows whereas all exact
theoretical techniques for nonspherical particles cease to be practical whenever the
size parameter exceeds a certain threshold value.

7.1 Rayleigh approximation

Rayleigh (1897) derived an approximation for scattering in the small-particle limit by
assuming that the incident field inside and near the particle behaves almost as an
electrostatic field and the internal field is homogeneous.  Hence the conditions of va-
lidity of the Rayleigh approximation (RA) are x � 1 and || xm  � 1, where x =

,2 1λπa  a is the semi-major particle dimension, 1λ  is the wavelength of the incident
light in the surrounding medium, and m is the relative refractive index.  A detailed
account of the RA was given by Kleinman and Senior (1986).  A completely analyti-
cal solution exists for only a few simple shapes, including triaxial ellipsoids.  For
general shapes, one must solve numerically a simple integral equation for the polari-
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zability tensor.  Bohren and Huffman (1983, Chapter 5) gave analytical formulas for
the optical cross sections and the scattering matrix elements of randomly oriented
spheroids.  Note that direct use of the optical theorem (Section 2.8) in the framework
of the RA yields only the absorption component of the extinction cross section and
must be supplemented by the computation of the scattering cross section via Eq.
(2.160).

Kerker et al. (1978) and Ku and Felske (1984) compared approximate and exact
Lorenz–Mie results for the scattering matrix and the extinction and scattering effi-
ciency factors of small homogeneous spheres and concluded that the range of validity
of the RA in terms of the maximal size parameter varied with relative refractive index
and scattering angle.  Mishchenko (1990b, 1991b) and Voshchinnikov and Farafonov
(2000) used the exact T-matrix and the separation of variables methods to analyze the
range of validity of RA computations of the extinction matrix and extinction, scatter-
ing, and absorption efficiencies for homogeneous spheres and perfectly and partially
aligned as well as randomly oriented spheroids.

Farafonov (2000) derived the formulas of the RA for multilayered ellipsoids.
Muinonen (1996, 2000) and Battaglia et al. (1999) applied the RA to so-called Gaus-
sian random spheres. Jones (1979) extended the RA to clusters of small spheres (see
also Mackowski 1995, and references therein).

Stevenson (1953) generalized the RA by expanding the internal and scattered
electric fields in powers of the size parameter x.  The first term, which is ),( 2xO
gives the RA whereas the second term, ),( 4xO  gives the so-called Rayleigh–Gans–
Stevenson approximation.  This approach was extended to inhomogeneous objects by
von Ross (1971) and applied to various scattering problems by Stevenson (1968) and
Khlebtsov (1979).

Another way of deriving the formulas of the Rayleigh or higher-order approxima-
tions is to analyze an exact solution in the limit .0→x   For example, one can use the
expansions
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for the spherical Bessel functions of the first and second kind (Abramowitz and
Stegun 1964, p. 437) along with Eq. (C.1) and Lorenz–Mie formulas of Section 5.7
and subsection 5.8.5 to derive the following classical equations of the RA for small
homogeneous spheres:

,
2
1

3
8   

2

2

2
4

0
sca +

−=
→ m

mxQ
x

   (7.3)



Scattering, Absorption, and Emission of Light by Small Particles208

,
2
1Im4   2

2

0
abs ��

�

�
��
�

�

+
−=

→ m

mxQ
x

   (7.4)

,

cos2000
0cos200
00cos1sin
00sincos1

4
3   )(

~ 22

22

0

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+−
−+

=
→

Θ
Θ

ΘΘ
ΘΘ

Θ
x

F    (7.5)

where 12 λπrx =  is the size parameter and r is the sphere radius (Bohren and Huff-

man 1983). Figure 7.1 visualizes the elements of the normalized Stokes scattering
matrix of Eq. (7.5), whereas Table 7.1 lists the respective expansion coefficients (de
Rooij 1985).  The scattering efficiency factor in the Rayleigh approximation is in-
versely proportional to the fourth power of the wavelength, the absorption efficiency
factor is inversely proportional to the wavelength, and the absorption cross section

=absC abs
2Qrπ  is proportional to the particle volume :3
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Figure 7.1.  The phase function )(1 Θa  and the ratios )()( 13 ΘΘ aa  and )()( 11 ΘΘ ab−  versus
scattering angle Θ  for a homogeneous sphere in the Rayleigh limit.
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Equations (7.3) and (7.4) indicate that for small particles with at least moderate ab-
sorption, extinction is dominated by absorption.  The rapid increase in the scattering
cross section with decreasing wavelength causes air molecules to scatter more blue
than red light and transmit more red than blue light.  This behavior explains the blue
color of the clear sky and the familiar reddening of the sunset. The Rayleigh phase
function (the upper left panel in Fig. 7.1) is nearly isotropic and is symmetric with
respect to the scattering angle ,90°=Θ  thereby yielding an asymmetry parameter
equal to zero:

.0  cos
0→

=��
x

Θ    (7.7)

The degree of linear polarization of scattered light for unpolarized incident light,
=)(ΘQP )()()()( 11

scasca ΘΘΘΘ abIQ −=−  (the panel at the lower level in Fig. 7.1),
is always positive, has the classical bell-like shape, and reaches 100% at the scattering
angle .90°=Θ

In a similar fashion, the extended boundary condition method can be used to de-
rive closed-form analytical formulas of the RA for very small spheroids (Tsang et al.
1985, pp. 192–3).

7.2 Rayleigh–Gans approximation

The conditions of validity of the Rayleigh–Gans approximation (RGA) (otherwise
known as the Rayleigh–Debye or Born approximation; e.g., Ishimaru 1997, Section
2.6) are |1| −mx  � 1 and |1| −m � 1.  In other words, the particles are assumed to be
not too large (although they may be larger than in the case of Rayleigh scattering) and
optically “soft”.  The fundamental assumption of the RGA is that each volume ele-
ment of the scattering object is excited only by the incident field.  The scattered field
is then computed from Eq. (2.22) after substituting ).()( inc rErE ′=′   This simplifying
assumption leads to significant analytical progress in many specific cases. Also, like
many other asymptotic approximations, the RGA may often be useful outside its for-
mally defined range of validity (e.g., Barber and Wang 1978).  Acquista (1976) gen-
eralized the RGA by applying the method of successive iterations (Shifrin 1968) to

Table 7.1.  Expansion coefficients for the normalized Stokes scattering matrix of a
homogeneous sphere in the Rayleigh limit

s        s
1α       s

2α          s
3α   s

4α     s
1β      s

2β

0     1     0     0    0      0     0
1      0     0     0        23      0     0

2  21      3     0     0     23 0
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Eq. (2.16).  This approach was applied to spheroids and finite circular cylinders and is
valid for |1| −mx � 1 (Haracz et al. 1984, 1985, 1986).  Khlebtsov (1984) derived an
exact integral equation of Lippman–Schwinger type by taking the Fourier transform
of Eq. (2.16).  Successive iterations of this equation give the RGA, the Acquista re-
sult, and higher-order approximations.  This approach was extended to anisotropic
scatterers and applied to suspensions of aligned particles by Khlebtsov and Melnikov
(1991) and Khlebtsov et al. (1991).  Muinonen (1996, 2000) applied the RGA to par-
ticles with Gaussian random surfaces.

7.3 Anomalous diffraction approximation

The anomalous diffraction approximation (ADA) was introduced by van de Hulst
(1957, Chapter 11) as a means of computing the extinction cross section for large,
optically soft spheres with x � 1 and |1| −m � 1. Since the second condition means
that rays are weakly deviated as they cross the particle boundary and there is negligi-
ble reflection, the ADA implies that extinction is caused by (i) absorption of light
passing through the particle and (ii) interference of the light passing through the parti-
cle and the light passing around the particle.  This simplification allows a general rep-
resentation of the extinction and absorption cross sections as simple integrals over the
particle projection on the plane perpendicular to the incident beam.  The integrals can
be evaluated numerically or, in some special cases, analytically.  The ADA has been
applied to prismatic columns (Chýlek and Klett 1991a, b), hexagonal ice crystals
(Chýlek and Videen 1994; Sun and Fu 1999), spheroids (Evans and Fournier 1994;
Baran et al. 1998), cubes (Masłowska et al. 1994), ellipsoids (Streekstra et al. 1994),
and finite circular cylinders (Liu et al. 1998).  Comparisons of the ADA and the exact
T-matrix results (Liu et al. 1998) suggest that the ADA estimate of extinction is more
accurate for randomly oriented nonspherical particles than for spheres, and that the
ADA errors in absorption decrease with increasing imaginary part of the relative re-
fractive index.  Meeten (1982) and Khlebtsov (1993) extended the ADA to scattering
by anisotropic particles and fractal clusters, respectively.  The ADA and the closely
related Wentzel–Kramers–Brillouin and eikonal approximations belong to the family
of high-energy approximations (e.g., Perrin and Lamy 1986; Bourrely et al. 1989;
Klett and Sutherland 1992; Sharma and Somerford 1999; Shepelevich et al. 1999).

7.4 Geometrical optics approximation

The geometrical optics approximation (GOA) (otherwise known as the ray-tracing or
ray optics approximation) is a universal approximate method for computing light
scattering by arbitrarily shaped and arbitrarily oriented particles with sizes much
larger than the incident wavelength.  The GOA is based on the assumption that the
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incident plane wave can be represented as a collection of parallel rays which pursue
independent paths and that it is possible to distinguish between rays striking different
local regions on the particle’s surface.  Numerical results are obtained by tracing the
histories of a large number of uniformly spaced rays striking the particle. Each inci-
dent ray is partially refracted into the particle and partially reflected (Fig. 7.2).  The
Stokes parameters of the refracted and reflected parts of the ray and the direction of
the refracted part are determined using Fresnel’s formula and Snell’s law, respectively
(Jackson 1998, Section 7.3).  The refracted ray may emerge after another refraction,
possibly following one or more internal reflections, and it may be attenuated by ab-
sorption inside the particle.  Each internal ray is traced until its intensity decreases
below a prescribed cut-off value.  Varying the polarization state of the incident rays,
sampling all escaping rays into predefined narrow angular bins, and adding incoher-
ently the respective Stokes parameters yields a quantitative representation of the par-
ticle scattering properties in terms of the ray-tracing phase matrix .RTZ   Because all
rays impinging on the particle surface are either scattered or absorbed irrespective of
their polarization state, the ray-tracing extinction matrix is always diagonal and is
given by

,RT
ext

RT ∆K C=    (7.8)
where ∆  is the 44×  unit matrix.  The ray-tracing extinction cross section RT

extC  does
not depend on the polarization state of the incident light and is equal to the geometri-
cal area G of the particle projection on the plane perpendicular to the incidence direc-
tion:

.RT
ext GC =    (7.9)
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Figure 7.2.  Ray-tracing diagram for scattering at a single particle.
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Since the presence of the particle modifies the incident plane wave front by elimi-
nating a part that has the shape and size of the geometrical projection of the particle,
the ray-tracing scattering pattern must be supplemented by the computation of Fraun-
hofer diffraction of the incident wave on the particle projection.  The diffraction com-
ponent of the phase matrix DZ  is confined to a narrow angular cone centered at the
exact forward-scattering direction and is usually computed in the Kirchhoff approxi-
mation (Jackson 1998), thereby contributing only to the diagonal elements of the total
phase matrix (Muinonen 2000). The diffraction component DΚ of the total geometri-
cal optics extinction matrix GOΚ is simply the product of G and the 44×  unit matrix
and is equal to the ray-tracing component .RTK  We thus have

,D
11

RTDRTGO ∆ZZZZ Z+=+=  (7.10)

,GO
ext

DRTGO ∆KKK C=+=  (7.11)

where

.2D
ext

RT
ext

GO
ext GCCC =+=  (7.12)

The geometrical optics scattering cross section is the sum of the ray-tracing and dif-
fraction components:

.D
sca

RT
sca

GO
sca CCC +=  (7.13)

Since the diffracted energy is not absorbed, the diffraction scattering cross section is
equal to the diffraction extinction cross section:

.D
ext

D
sca GCC ==  (7.14)

The ray-tracing scattering cross section RT
scaC  is found from RTZ and Eq. (2.160).

Energy conservation requires that it be always smaller than or equal to the ray-tracing
extinction cross section:

.RT
ext

RT
sca GCC =≤  (7.15)

GOA computations are particularly straightforward for spheres because the ray
paths always remain in a plane (Liou and Hansen 1971), thereby simplifying the ray-
tracing part of the computation, while the diffraction component of the phase matrix
is given by a closed-form analytical formula (cf. Bohren and Huffman 1983, p. 110)
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where x is the size parameter of the sphere, )ˆˆarccos( incsca nn ⋅=Θ  is the scattering
angle, and )(1 zJ  is the Bessel function of order unity.  Figure 7.3 shows the quantity

2
1 ])sin()sin(2[ ΘΘ xxJ  as a function of .sinΘx   It is seen that for x � 1 essentially

all the diffracted light is confined within an angular cone of half-width .7 x≅Θ   The
respective ray-tracing asymmetry parameter is equal to unity to high precision:
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.1cos RT
∞→

→��
x
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For nonspherical particles, ray tracing is usually performed using a Monte Carlo
approach, whereas the diffraction is often approximated by Eq. (7.16) evaluated for
an equal-projected-area sphere (more accurate approaches have been discussed by
Takano and Asano (1983), Muinonen (1989), Petrushin (1994), and Yang and Liou
(1998a)).  Wendling et al. (1979), Cai and Liou (1982), Volkovitsky et al. (1984),
Takano and Jayaweera (1985), Rockwitz (1989), Takano and Liou (1989a), Masuda
and Takashima (1992), and Xu et al. (1997) applied the GOA to hexagonal columns
and plates in random and horizontal orientations, whereas Yang and Cai (1991),
Macke and Mishchenko (1996), and Kokhanovsky and Nakajima (1998) computed
scattering by randomly oriented spheroids and finite circular cylinders.  Light scat-
tering by various polyhedral shapes has been studied by Liou et al. (1983), Muinonen
et al. (1989), Macke (1993), Iaquinta et al. (1995), Takano and Liou (1995), Liu et al.
(1996), Macke et al. (1996b), and Yang and Liou (1998a).  The GOA has been ap-
plied also to distorted raindrops (Macke and Großklaus 1998; Nousiainen and Mui-
nonen 1999; Nousiainen 2000) and large randomly shaped (stochastic) particles (Pel-
toniemi et al. 1989; Macke et al. 1996b; Muinonen et al. 1996; Hess et al. 1998;
Yang and Liou, 1998a; Han et al. 1999; Grundy et al. 2000; Muinonen 2000).

 Macke et al. (1996a), Mishchenko and Macke (1997), C.-Labonnote et al. (2000),
Macke (2000), and Hillier and Buratti (2001) have used the GOA to compute scatter-
ing and absorption properties of large particles containing multiple randomly posi-
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Figure 7.3.  Angular distribution of the diffracted intensity.
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tioned small inclusions with an index of refraction different from that of the host.  The
ray-tracing procedure assumes that each inclusion scatters light independently of all
other inclusions, thereby implying that the mean distance between the inclusions is
greater than a few times their radii (Section 3.3).  The inclusions are usually assumed
to be spherical, and their single-scattering and absorption properties are computed
using the Lorenz–Mie theory.  However, nonspherical inclusions can also be accom-
modated.  After an incident ray is refracted into the host particle, it is allowed to
travel a straight random path length that depends on the number density of the inclu-
sions and their average extinction cross section.  If the ray has not reached the bound-
ary of the host particle, its propagation direction is then changed in accordance with
the average inclusion phase function and its energy is multiplied by the average inclu-
sion single-scattering albedo.  This process is continued until the ray reaches the host
boundary, where it is partially refracted out of the host and partially internally re-
flected.  The entire procedure is repeated for the internally reflected component.  The
history of the internal ray is traced until its energy falls below a specific threshold.
This technique is in essence a Monte Carlo solution of the radiative transfer equation
for the interior of the host particle subject to the Fresnel boundary conditions on the
host particle surface (Section 3.4).

A collection of GOA codes applicable to a wide variety of problems has been de-
veloped by Andreas Macke and is publicly available at http://www.ifm-geomar.de/
index.php?id=981&L=1.

The main advantage of the GOA is that it can be applied to essentially any shape.
However, this technique is approximate by definition, and its range of applicability in
terms of the smallest allowable size parameter must be checked by comparing the
GOA results with exact numerical solutions of the Maxwell equations.  As an exam-
ple, Figs. 7.4 and 7.5 depict the results of GOA and Lorenz–Mie computations of the
phase function )(1 Θa  and the ratio )()( 11 ΘΘ ab−  versus scattering angle Θ  for non-
absorbing homogeneous spheres with relative refractive indices m = 1.33 and m =
1.53 and size parameters x = 40, 160, and 600.  The computations were performed
using the ray-tracing code described by Macke and Mishchenko (1996) and the Lo-
renz–Mie code described in Section 5.10.  In order to smooth out interference and
resonance effects (Section 9.1), the Lorenz–Mie results have been averaged over a
narrow size distribution given by Eq. (5.245) with b = 0.07, so that x represents the
effective size parameter ,2 1eff λπr  where effr  is given by Eq. (5.248).  The ray-
tracing and diffraction components of the GOA phase functions have been averaged
over 1º-wide angular bins.  It is clear that the GOA phase-function results for spheres
become reasonably accurate only at size parameters exceeding several hundred.  Fur-
thermore, the GOA completely fails to reproduce the strong enhancement of intensity
in the backscattering direction )180( °≅Θ  observed for m = 1.33 and usually associ-
ated with so-called surface waves (cf. Section 9.4).  Obtaining good accuracy in GOA
computations of the ratio )()( 11 ΘΘ ab−  requires even larger size parameters (Fig.
7.5).
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Shown in Fig. 7.6 are results of GOA and T-matrix computations of the phase
function for monodisperse, randomly oriented circular cylinders with a diameter-to-
length ratio of unity, relative refractive index m = 1.311, and surface-equivalent-
sphere size parameters sx  varying from 40 to 180; Fig. 7.7 depicts all elements of the
normalized Stokes scattering matrix for .180s =x  The small-amplitude ripple in the
T-matrix curves is caused by interference effects characteristic of monodisperse parti-
cles.  Averaging over cylinder orientations makes this ripple much weaker than for
monodisperse surface-equivalent spheres and can be eliminated entirely by averaging
over a narrow size distribution.  Contrasting Figs. 7.4 and 7.5 with Figs. 7.6 and 7.7
seems to suggest that GOA results for nonspherical particles may be somewhat more
accurate for a given size parameter than those for surface-equivalent spheres (Macke
et al. 1995; Mishchenko and Macke 1999).  However, it is clear that although the
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Figure 7.4. Phase function )(1 Θa  versus scattering angle Θ  computed with the GOA and the
Lorenz–Mie theory for homogeneous spheres with relative refractive indices m = 1.33 and m =
1.53 and size parameters x = 40, 160, and 600.  The vertical axis scale applies to the curves with
x = 600, the other curves being successively displaced upward by a factor of 100.  (After Han-
sen and Travis 1974.)



Scattering, Absorption, and Emission of Light by Small Particles216

main geometrical optics features can be qualitatively reproduced by particles with
size parameters less than 100, obtaining good quantitative accuracy in GOA compu-
tations of the scattering matrix for nonspherical particles still requires size parameters
exceeding a few hundred.
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the Lorenz–Mie theory for homogeneous spheres with relative refractive indices m = 1.33 and
m = 1.53 and size parameters x = 40, 160, and 600.  (After Hansen and Travis 1974.)
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GOA computations for absorbing particles (i.e., with a non-zero imaginary part of
the relative refractive index) are more complicated because in this case the refracted
waves are inhomogeneous, so that the surface of constant amplitude does not coincide
with the surface of constant phase.  Formally, Snell’s law can still be used, but it must
be modified as described by Stratton (1941, Section 9.8) (see also Ulaby et al. 1981,
Section 2-8).  The consequences of this modification were discussed by Yang and
Liou (1995) and Zhang and Xu (1995) and may often be neglected.  The effect of
absorption on the accuracy of ray-tracing computations has been analyzed further by
Yang et al. (2001a).
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The failure to reproduce the backscattering enhancement of intensity caused by
surface waves in spherical particles is not the only inherent deficiency of the GOA.
For example, the GOA predicts that for crystals with parallel plane facets the ray-
tracing component of the phase function should have a delta-function peak in the ex-
act forward-scattering direction because the direction of the incident rays is not
changed after they undergo two refractions through parallel plane interfaces, as dem-
onstrated in Fig. 7.8.  This effect is called the delta-function transmission (Liou
1992).  It is clear, however, that the GOA predicts the infinitesimally narrow trans-
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mission peak only because it ignores physical optics effects.  Figure 7.9 shows the
results of exact T-matrix computations of the ratio

)0,0;0,0(
)0,0;0,()( incincscasca

11

incincscasca
11

====
=====

ϕϑϕϑ
ϕϑϕΘϑΘ

Z
ZR  (7.18)

for two circular disks with diameter-to-length ratio 3 and size parameter ,501 =λπ D
where D is the diameter of each disk and 1λ  is the wavelength of the incident light in
the surrounding medium. The first disk has a relative refractive index of 1.31 and is
transparent (nonabsorbing), whereas the second disk has a relative refractive index of
1.31 + i0.1 and is rather opaque.  Both disks are illuminated by unpolarized light inci-

Figure 7.8.  The direction of incident rays is not changed after they are refracted twice by
parallel plane facets.
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Figure 7.9.  The angular profile of the ratio R defined by Eq. (7.18) for transparent and opaque
circular disks.
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dent along their axis of rotation, and )(ΘR  is the ratio of the intensity of light scat-
tered at an angle Θ  to the intensity of light scattered in the exact forward direction.
If the GOA prediction of the delta-function transmission were correct then the curve
for the opaque disk would have only the diffraction component whereas that for the
transparent disk would be a superposition of the diffraction pattern and a much nar-
rower delta-function transmission component.  However, the rigorous T-matrix com-
putations show that although the )0,0;0,0(11Z  value for the transparent disk is al-
most three times greater than that for the opaque disk, the angular profiles of the ratio

)(ΘR  for both disks is essentially the same.  This result unequivocally indicates that
the delta-function transmission contribution is not a true delta function but rather has
the same angular profile as the Fraunhofer diffraction peak (Mishchenko and Macke
1998).

The explanation of this result is that a wave front emerging from any finite flat
crystal facet (e.g., from the top facet of the particle shown in Fig. 7.8) should spread
and produce an angular intensity distribution in the far-field zone similar to the
Fraunhofer diffraction pattern (Volkovitsky et al. 1984; Muinonen et al. 1989).  This
applies not only to the transmitted light but also to the externally reflected light.  For
example, the plane wave front emerging from the bottom facet of the particle shown
in Fig. 7.8 also spreads and produces a Fraunhofer-like angular distribution of the
specularly reflected intensity, albeit twice as narrow as the diffracted intensity distri-
bution (Mishchenko et al. 1997b).  Both effects can have significant ramifications for
laboratory and remote sensing techniques exploiting exact forward-scattering, back-
scattering, and specular directions (e.g., Platt 1978; Chepfer et al. 1999; Reichardt et
al. 2000b).

Since the standard ray-tracing procedure does not take into account phase rela-
tions between different rays, the GOA ignores the effect of coherent backscattering
(Section 3.4).  It may, therefore, underestimate the contribution of rays propagating
inside the particle along the same paths but in opposite directions and exiting the par-
ticle in the direction opposite to the incidence direction.  This underestimation may be
especially significant for particles with multiple internal inclusions, and one should
correct for it by explicitly tracing not only the energies (or, more generally, the Stokes
parameters) of the rays but also their phases and by taking into account interference
effects (e.g., Göbel et al. 1998).  Although coherent backscattering does not change
the optical cross sections of the composite particle and is unlikely to modify noticea-
bly its asymmetry parameter, it may increase substantially the backscattering phase
function and, therefore, affect the results of laboratory and remote sensing studies
using backscattered light (e.g., the results of lidar measurements).

To improve the performance of the geometrical optics approximation, Ravey and
Mazeron (1982, 1983) developed the so-called physical optics or Kirchhoff approxi-
mation.  This approach is based on Eq. (5.168) supplemented by the far-field asymp-
totic of Eq. (2.20).  Equation (5.168) expresses the scattered field in terms of the
electric and magnetic fields on the exterior side of the particle surface.  The latter are
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computed approximately using Fresnel’s formulas and the standard ray-tracing proce-
dure. The main difference from the conventional GOA scheme is the coherent adding
of fields rather than the incoherent adding of Stokes parameters of the scattered rays;
this allows the Kirchhoff approximation to preserve the phase information and repro-
duce physical optics effects completely ignored by the GOA scheme.  The physical
optics approach was used, with some variations, by Muinonen (1989), Yang and Liou
(1995, 1996b), Mazeron and Muller (1996), and Yang et al. (2000a) and was found to
be rather time consuming.  Since this technique is still an approximation, its accuracy
as a function of size parameter should be extensively tested versus exact solutions,
especially when the full scattering matrix is computed.

7.5 Perturbation theories

The idea of the perturbation theory (PT) approach is to define the surface of an ir-
regular particle in spherical coordinates by )],,(1[),( 0 ϕϑξϕϑ frr +=  where 0r  is the
radius of the “unperturbed” sphere, ξ  is a “smallness parameter”, and ),( ϕϑf  obeys
the condition .1|),(| <ϕϑf  The fields inside and outside the particle are expanded in
vector spherical wave functions and the expansion coefficients, which are determined
through the requirement of the standard boundary conditions, are expressed as power
series in ξ  (Oguchi 1960; Yeh 1964; Erma 1969).  Similar approaches were devel-
oped by Ogura and Takahashi (1990) and Martin (1993).  Note that the application of
the boundary conditions explicitly relies on the (unproven) validity of the Rayleigh
hypothesis (see Section 6.4).

Schiffer (1989, 1990) combined the PT with an analytical orientation-averaging
procedure to compute the scattering properties of randomly oriented particles.  He
also reported many numerical results obtained with the second-order PT and com-
pared them with exact T-matrix computations by Mugnai and Wiscombe (1980) and
Wiscombe and Mugnai (1988) for Chebyshev particles.  The second-order PT showed
good accuracy only for 72 10 <λπr  and only if the surface deviations from the un-
perturbed sphere were much smaller than the wavelength.  Similar conclusions were
reached by Kiehl et al. (1980) on the basis of first-order PT computations.  Battaglia
et al. (1999), Muinonen (2000), and Nousiainen et al. (2001) have applied the second-
order PT to Gaussian random particles.

Lacoste et al. (1998) and Lacoste and van Tiggelen (1999) considered light scat-
tering by a Faraday-active dielectric sphere imbedded in an isotropic medium with no
magneto-optical properties and subject to a homogeneous external magnetic field.
They computed the amplitude and Stokes scattering matrices by using a perturbation
approach and keeping only terms proportional to the first order of the magnetic field.
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7.6 Other approximations

If the thickness of a particle in one of its dimensions is much smaller than a wave-
length, it is often possible to approximate the integral equations describing the scat-
tering process.  This approach was applied to thin finite cylinders by Uzunoglu et al.
(1978), to thin cylinders and disks by Schiffer and Thielheim (1979) and Fung (1994,
Section 11.2), to thin disks by Weil and Chu (1980), and to thin-walled cylinders by
Senior and Weil (1977).

Equation (2.16) can be used to compute the scattered field provided that the inter-
nal field is known.  Le Vine et al. (1985) calculated the electromagnetic scattering
from a homogeneous dielectric disk with a radius much larger than its thickness by
approximating the internal field by the field that would exist inside an infinite homo-
geneous slab of the same thickness, orientation, and relative refractive index.  Simi-
larly, Karam and Fung (1988) and Seker and Schneider (1988) computed the scatter-
ing from long circular cylinders by approximating the internal field using the exact
solution for an infinitely long cylinder with the same radius, orientation, and relative
refractive index.  A surface-field analog of this approximation was developed by Lin
and Sarabandi (1995) and was extended to finite hexagonal cylinders by Rother et al.
(1999) by virtue of computing the surface field for an infinite hexagonal cylinder us-
ing the discretized Mie formalism (Rother 1998).  Because this approach ignores the
contributions from the cylinder’s top and bottom, it cannot reproduce such scattering
features as the °46  halo for circular and hexagonal ice cylinders attributed to the
minimal angle of deviation by °90  prisms and the strong backscattering enhancement
caused by double internal reflections from perpendicular facets (see Fig. 7.6 and Sec-
tion 10.6).

A similar approach was applied by Kuzmin and Babenko (1981) to the problem of
scattering by spherical particles composed of a weakly anisotropic material.  They
computed the scattered field via Eq. (2.16) by approximating the internal field by that
of an “equivalent” isotropic sphere.

Pollack and Cuzzi (1980) developed a semi-empirical theory based on the results
of microwave analog measurements by Zerull (1976).  They approximated the scat-
tering properties of nonspherical particles with 0xx <  using the Lorenz–Mie results
for volume-equivalent spheres, where 0x  is a tunable parameter typically close to 5.
The absorption cross section for larger nonspherical particles was still computed us-
ing the Lorenz–Mie theory, while the phase function was represented as a sum of the
Fraunhofer diffraction, the rays reflected from a sphere, and transmitted rays that
were fitted to mimic Zerull’s measurements by the use of another tunable parameter.
Coletti (1984) proposed another semi-empirical theory based on his own optical
measurements and similar in some respects to that of Pollack and Cuzzi.

Drossart (1990) proposed a model for calculating the scattering properties of ir-
regular, randomly oriented particles based on modified Lorenz–Mie formulas for vol-
ume-equivalent spheres.  The underlying assumption of the model is that the ampli-
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tude scattering matrix for nonspherical particles can still be described by the Lorenz–
Mie equations (5.149)–(5.151), but each summand on the right-hand side of Eqs.
(5.149) and (5.151) experiences an independent random phase shift modeled by fac-
tors )exp(i nα  and )exp(i nβ  for 11S  and ,22S  respectively.  An obvious deficiency of
this approximation is that Eq. (5.150) is still applied despite the assumption of particle
nonsphericity.  As a consequence, the model preserves the Lorenz–Mie structure of
the Stokes scattering matrix (Eq. (4.49)) and predicts linear and circular depolariza-
tion ratios identically equal to zero irrespective of the particle shape.  Furthermore,
the model does not provide a recipe for choosing the random phase factors based on
particle microphysical characteristics.

Latimer (1975) developed several hybrid approximations for spheroids using the
Lorenz–Mie theory and assigning an effective sphere radius and relative refractive
index depending on the spheroid orientation and axis ratio.  Latimer and Barber
(1978) examined the accuracy of this approach by comparing its results with those
obtained using the exact T-matrix method.  Grenfell and Warren (1999) approximated
the scattering and absorption properties of a long ice cylinder in random orientation
using a collection of independent spheres having the same total volume and total sur-
face area as the cylinder.

Further reading

Useful discussions of approximate theories can be found in the books by van de Hulst
(1957), Kerker (1969), Bohren and Huffman (1983), Volkovitsky et al. (1984),
Lopatin and Sid’ko (1988), and Kokhanovsky (1999) as well as in the recent review
by Jones (1999).  In Markel et al. (2000) approximate approaches are used to compute
the scattering and absorption properties of smoke clusters.

The physical foundation of the geometrical optics concept of rays is explained in
Chapter III of Born and Wolf (1999) and in a book by Kravtsov and Orlov (1990).
Associated concepts of caustics and catastrophes are discussed by Marston (1992) and
Kravtsov and Orlov (1999).  A collection of selected papers on the geometrical theory
of diffraction and wave fields near caustics relevant to scattering problems was edited
by Marston (1994).
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Chapter 8

Measurement techniques

Despite the availability of advanced theoretical techniques, laboratory and in situ ex-
periments remain a useful (and sometimes the only) source of information about light
scattering by many types of natural and artificial particles.  Existing techniques for meas-
uring the electromagnetic scattering characteristics of small particles traditionally fall
into two categories:

● the measurement of visible and infrared light scattering by particles with sizes
ranging from several hundredths of a micron to several hundred microns;

● the measurement of microwave scattering by millimeter- and centimeter-sized
objects.

Measurements in the visible and infrared benefit from the availability of sensitive detec-
tors (photomultipliers and avalanche semiconductor photodiodes), intense sources of
radiation (lasers), and high-quality optical elements.  They involve relatively cheap and
portable instrumentation and in some cases can be performed in the field nearly as well
as in the laboratory.  By contrast, microwave scattering experiments require more cum-
bersome and expensive instrumentation and large (and often stationary) measurement
facilities but typically provide better control and knowledge of the scatterer’s geometrical
and physical characteristics.

8.1 Measurements in the visible and infrared

We have mentioned already, in Section 2.6, that many detectors of electromagnetic
energy (especially in the visible and infrared spectral regions) are polarization-
insensitive, so that the detector response is determined only by the first Stokes pa-
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rameter of the beam impinging on the detector.  Therefore, in order to measure all
elements of the scattering matrix for a particle or a collection of particles, one has to
insert into the beam various optical elements that can vary the polarization state of the
light, before and after scattering, in a controllable way.  In Fig. 8.1, the beam gener-
ated by a light source (usually a laser) passes a linear polarizer and a polarization
modulator and then illuminates particles contained in a jet stream or a scattering
chamber.  Light scattered by the particles at an angle Θ passes a quarter-wave plate
(optionally) and a polarization analyzer before its intensity is measured by a detector.
The Stokes vector of the beam reaching the detector, ,I′  is given by

,)()( MPIFAQMPIAQFI ��=∝′ ΘΘ N    (8.1)

where I  is the Stokes vector of the beam leaving the light source, A, Q, M, and P are
44×  Mueller transformation matrices of the analyzer, quarter-wave plate, modulator,

and polarizer, respectively, )(ΘF  is the total scattering matrix of the particles con-
tributing to the scattered beam, N is the number of the particles, and �� )(ΘF  is the
ensemble-averaged scattering matrix per particle.  It is implied that the scattering
plane serves as the reference frame for defining the Stokes parameters.  The Mueller
matrices of the polarizer, modulator, quarter-wave plate, and analyzer depend on their
orientation with respect to the scattering plane and can be varied precisely.  Since the

Figure 8.1.  Schematic view of an experimental scattering setup using visible or infrared light.
(After Hovenier 2000.)
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detector measures only the first element of the Stokes vector ,I′  several measure-
ments with different orientations of the optical components with respect to the scat-
tering plane are required for full determination of the scattering matrix.  In the case of
randomly oriented particles with a plane of symmetry and/or in the case of particles
and their mirror counterparts in equal numbers and in random orientation, the six in-
dependent scattering matrix elements (Eq. (4.7)) can be determined using four differ-
ent orientation combinations (Kuik et al. 1991).  This procedure is repeated at differ-
ent scattering angles in order to determine the angular profile of the scattering matrix.

The accuracy of an experimental setup can be tested by performing measurements for
particles with known scattering characteristics such as spherical water droplets (e.g.,
Muñoz et al. 2000a).  One can also check the block-diagonal structure of the scattering
matrix, Eq. (4.7), which should exist when particles form a macroscopically isotropic and
mirror-symmetric medium.  Additional tests are provided by the general relationships for
the scattering matrix elements (Hovenier and van der Mee 2000).

Early measurements of the scattering matrix used a simple subtraction method that
relied on pairs of intensities measured separately with different combinations of polariz-
ing elements; the results were subtracted in order to obtain scattering matrix elements
(Pritchard and Elliott 1960; Beardsley 1968; Rozenberg et al. 1970).  This technique has
low accuracy because of the need to determine small differences between two large sig-
nals.  The measurements of the two large signals are separated in time and this requires
one to assume that the sensitivity of the detector and also the scattering sample (e.g., the
number N of scattering particles) do not change with time, which is often not the case.

Hunt and Huffman (1973) developed the technique of high-frequency sinusoidal time
modulation of the polarization of the light before it is scattered (Fig. 8.1), combined with
intensity normalization.  Followed by lock-in detection, this technique improves the
measurement accuracy by enabling direct measurements of the scattering matrix ele-
ments normalized by the (1, 1) element of the matrix and yields the capability to deter-
mine several elements from only one detected signal.  Advanced experimental setups
based on this technique have been described by Bickel et al. (1976), Thompson (1978),
Thompson et al. (1980), Anderson (1992), Kuik (1992), Hovenier (2000), and Kaplan et
al. (2000).

A major advantage of measurements at visible and infrared wavelengths is that
they can deal with real particle ensembles.  However, they often suffer from the lack
of accurate independent characterization of the particle size and shape distribution
and relative refractive index, thereby making comparisons of experimental and theo-
retical results difficult.  The number of particles N contributing to the scattered beam
is also seldom known, which precludes the absolute measurement of the (1, 1) ele-
ment of the ensemble-averaged scattering matrix per particle �� )(ΘF  (measurements
of elements other than the (1, 1) element are usually reported in the form of N-
independent ratios of the elements to the (1, 1) element).  Another drawback is that
the arrangement of the source of light and the detector usually precludes measure-
ments at scattering angles close to °0  and °180  (although it is possible to add a
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backscattering measurement capability using a beam splitter).  For example, the setup
described by Hovenier (2000) has the range of scattering angles ].175,5[ °°   This
makes problematic absolute measurement of the phase function by means of satisfy-
ing the normalization condition of Eq. (4.53).  As a consequence, experimental phase
functions are often normalized to the value at a fixed scattering angle.  An alternative
way of presenting experimentally determined phase functions is to assume that the
phase-function value at the smallest scattering angle available is the same as for vol-
ume- or surface-equivalent spheres.  This approach may or may not be accurate, de-
pending on the (often unknown) validity of the underlying assumption.

The error in determining the scattering cross section per particle by integrating the
scattered intensities over all scattering angles also relies on a knowledge of N and de-
pends on how much of the forward- and back-scattered energy is not detected (Anderson
et al. 1996; Heintzenberg and Charlson 1996; Rosen et al. 1997).  As discussed in Sec-
tion 7.4, the phase function of particles larger than the wavelength of the incident light
has a strong and narrow diffraction peak that may contain more than 50% of the total
scattered energy (Figs. 7.3 and 7.4 and Eqs. (7.13)–7.15)).  This factor alone can cause
errors exceeding 50% in the measured scattering cross section.

The extinction cross section is often determined by measuring the attenuation of
the directly transmitted beam.  Specifically, the extinction cross section is propor-
tional to the difference in the readings of detector 1 in Fig. 2.3 corresponding to the
situations without and with the particle(s) interposed between the source of light and
the detector (Sections 2.8 and 3.1).  This measurement unavoidably suffers from the
problem that a detector with a finite angular aperture picks up some of the light scat-
tered by the particle(s) in the forward direction.  Depending on the average particle
size and thus the magnitude and angular width of the diffraction component of the
phase function (Fig. 7.3), the extinction can be underestimated by as much as a factor
of 2.  Indeed, we saw in Section 7.4 that, for particles larger than the wavelength, the
scattering cross section due to the diffraction peak is equal to the area of the particle’s
projection on the plane perpendicular to the incidence direction, Eq. (7.14), and, thus,
is equal to one-half of the extinction cross section, Eq. (7.12).  If the detector picks all
the energy contained in the narrow diffraction cone, then the energy removed by the
particle from the incident beam and thus the extinction cross section will be underes-
timated by 50%.  Therefore, if a detector is to measure accurately the full extinction
by particles with size parameters x � 1 then its acceptance angle must be much
smaller than ,7 x  say less than )2(1 x  (see Fig. 7.3).  Correction for the diffraction
contamination is possible if the average particle projection is known and is large, but
this is not always the case.  With significant potential errors in the extinction and
scattering cross sections, little may be said about the difference between the former
and the latter, i.e., the absorption cross section, or about the ratio of the latter to the
former, i.e., the single-scattering albedo, Eqs. (2.161) and (2.162).

Ashkin and Dziedzic (1980) obtained direct backscatter measurements by using
the optical levitation technique, which involved the suspension of particles by light
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pressure from the source laser beam alone.  An instrument specifically designed for
remote sensing measurements at the exact backscattering direction is a lidar, built of a
pointing laser emitting a powerful beam and a receiving telescope–detector combina-
tion affixed to the laser (Sassen 2000).  The laser beam is usually polarized either
linearly )0  ,1( == VP  or circularly ). ,1( IVP ±==  The laser light scattered by
aerosol and cloud particles is collected by the telescope, and its intensity and polari-
zation characteristics are precisely measured.  Since lidars measure backscattering
from particles located at large distances (hundreds and thousands of meters) from the
instrument, the scattering angle can be made arbitrarily close to .180°   Important
quantities measured by a polarization lidar are the so-called linear and circular depo-
larization ratios.  Because both ratios must vanish for spherically symmetric scatter-
ers, the detection of non-zero ratios may directly indicate the presence of nonspherical
particles (see Sections 10.2 and 10.11).

Early scattering experiments used unpolarized incident light and were limited to
measurements of the scattered intensity and the degree of linear polarization (Hodkin-
son 1963; Napper and Ottewill 1963).  The first measurements of other elements of
the scattering matrix were performed using the simple subtraction method.  The de-
velopment of the polarization modulation technique resulted in a number of accurate
measurements of the complete scattering matrix.  The results of extensive measure-
ments using visible and infrared light were reviewed by Hoekstra and Sloot (2000),
Mishchenko et al. (2000c), and Quinby-Hunt et al. (2000).  Among more recent re-
sults, we note measurements of the scattering matrix for iron oxide ellipsoids and
latex sphere suspensions (Kaplan et al. 1999, 2000), rutile particles in water (Volten
et al. 1999), olivine and Allende meteorite particles (Muñoz et al. 2000a), ice crystals
(Bacon and Swanson 2000), various mineral aerosols (Volten 2001; Volten et al.
2001), and fly ash and clay particles (Muñoz et al. 2000b, 2001).  Worms et al.
(2000) measured the degree of linear polarization for various scattering samples under
microgravity conditions.  Card and Jones (1999a,b) investigated the potential of
measuring polarized light scattering for characterization of irregular particles. Tavker
and Kumar (2000) performed laboratory measurements of the linear depolarization
ratio for artificial crystallized H2O/H2SO4 acid clouds.  Gerber et al. (2000) and
Garrett et al. (2001) used a so-called cloud integrating nephelometer to measure the
asymmetry parameter for water droplet and ice crystal clouds.  Wurm et al. (2000)
measured the intensity and polarization of light scattered by laboratory-generated dust
aggregates consisting of micrometer-sized components.  Barkey and Liou (2001) re-
ported measurements of the phase function of laboratory-generated water micro-
droplets and ice crystals using a portable lightweight nephelometer specifically de-
signed for deployment on a balloon-borne platform in cirrus cloud conditions.

To demonstrate the particle-characterization potential of measurements using visi-
ble light, we show in Fig. 8.2 laboratory results for the phase function )(1 Θa  and the
ratio )()( 11 ΘΘ ab  at two wavelengths (442 and 633 nm) measured for an artificial
cloud of spherical water droplets with a refractive index m = 1.33 relative to that of
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air.  The experimental phase functions are normalized to unity at .30°=Θ   Measure-
ment errors (shown by vertical error bars) are negligibly small at most scattering an-
gles.  The laboratory results are compared with the results of Lorenz–Mie calculations
for a log normal size distribution, Eq. (5.243), the parameters gr  and gσ  being cho-
sen such that the effective radius and effective variance of the distribution, Eqs.
(5.248) and (5.249), are µm1.1eff =r  and ,3.0eff =v  respectively.  These values were
found to minimize the differences between the measured and calculated scattering
matrix elements as functions of scattering angle.  Clearly, the quantitative agreement
between the measurements and the calculations is good over the entire scattering an-
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Figure 8.2.  The phase function )(1 Θa  and the ratio )()( 11 ΘΘ ab  measured by Muñoz et al.
(2000a) for an artificial cloud of spherical water droplets at two wavelengths.  The solid curves
show the results of Lorenz–Mie computations for a log normal size distribution of water
spheres, with effective radius and effective variance chosen such that they minimize the differ-
ences between the measured and calculated scattering matrix elements as functions of scatter-
ing angle.
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gle range.  The remaining differences may be due to the fact that the actual size dis-
tribution deviated somewhat from the assumed log normal distribution.

Knowledge of the scattering matrix provides a complete characterization of the
angular distribution and polarization state of the scattered light for spherically sym-
metric or randomly oriented particles.  However, averaging over orientations reduces
the potential information content of the scattered light by smoothing out specific fea-
tures generated by a nonspherical particle having a fixed orientation relative to the
incidence and scattering directions.  Therefore, several attempts have been made re-
cently to measure the intensity of the scattered light for single nonspherical particles
in a fixed orientation as a function of both the zenith and the azimuth angle and to
assess the particle characterization potential of such measurements (Hirst et al. 1994,
2001; Hirst and Kaye 1996; Kaye et al. 1996, 1997; Holler et al. 1998, 1999, 2000;
Sachweh et al. 1999; Borovoi et al. 2000; Secker et al. 2000; Videen et al. 2000a).
Plate 8.1 shows four examples of two-dimensional angular scattering measurements
for the case of laser light incident along the positive direction of the x-axis (cf. Fig.
1.2).  The measurements show a distinctive irregular patchy structure, with the patch
density per solid angle increasing with cluster diameter.  Although the amount of in-
formation contained in such two-dimensional angular scattering patterns may often be
overwhelming and may be difficult to interpret definitively, this technique appears to
be a promising particle characterization tool and should be pursued further.  An obvi-
ous improvement would be measurement of the polarization state as well as the inten-
sity of the scattered light.

8.2 Microwave measurements

Measurements of scattering properties of millimeter- and centimeter-sized objects at
microwave frequencies are important for such applications as the remote sensing of
precipitation and communication technology (Oguchi 1983; Aydin 2000; Haferman
2000).  In addition, the scale invariance rule (subsection 5.8.2) states that particle size
in the theoretical formulation of electromagnetic scattering is only encountered as a
ratio to the wavelength as long as one deals with dimensionless scattering and ab-
sorption characteristics.  Therefore, the strategy of the microwave analog technique is
to manufacture a centimeter-sized scattering object with the desired shape and relative
refractive index, study the scattering of a microwave beam by this object, and finally
extrapolate the results to other wavelengths (e.g., visible or infrared) by keeping the
ratio of size to wavelength fixed (Greenberg et al. 1961; Lind et al. 1965).

In a modern microwave scattering setup, radiation from a transmitting conical
horn antenna passes through a collimating lens and a polarizer (see Fig. 8.3).  The
lens produces a nearly flat wave front, which is scattered by an analog particle model
target.  The scattered wave passes through another polarizer and lens and is measured
by a receiving horn antenna.  The receiver end of the setup can be positioned at any
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scattering angle from °0  to ,170max °≅Θ  thereby providing measurements of the an-
gular distribution of the scattered radiation.  By precisely varying the orientations of
the two polarizers, one can measure all elements of the scattering matrix.  Detailed
discussions of various experimental aspects of the microwave analog technique have
been provided by Gustafson (1996, 2000).

Microwave measurements allow coverage of a wide range of scattering angles,
including the exact forward direction, and a much greater degree of control over the
target size, shape, and orientation than optical or infrared measurements.  Using spe-
cial techniques, even the extinction cross section (or, more generally, the extinction
matrix) can be measured.  Measurements at angles close to the backscattering direc-
tion are usually problematic because the transmitting and receiving antennas would
overlap.  It is possible, however, to add a backscattering measurement capability

)180( °=Θ  by using the transmitting antenna as a receiver.  Because the size of the
scattering object is typically of the order of centimeters for microwave analog meas-
urements, high-precision target manufacturing is easy and can involve computer-
controlled milling or stereo lithography.  Therefore, the results of controlled labora-
tory measurements at microwave frequencies can be compared with theory easily.  A

Figure 8.3.  Layout of an advanced microwave analog facility.  (After Gustafson 2000.)
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disadvantage of microwave measurements is that they can be performed only for one
particle size, shape, and orientation at a time, thereby making ensemble averaging a
time-consuming procedure.

Although the microwave analog technique was introduced several decades ago,
the complexity and the high cost of the equipment involved have limited the number
of operating experimental facilities to only a few.  Publications reporting and analyz-
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Figure 8.4.  Microwave analog measurements of the scattered intensity (in arbitrary units) and
the degree of linear polarization for a thin acrylic plate in random orientation (from Walde-
marsson and Gustafson 2000).  The diameter of the plate is 50.8 mm, the thickness is 1.52 mm,
and the relative refractive index is 1.62 + i0.003.  The broken and solid curves correspond to
the wavelength intervals 2.7–3.0 mm and 3.5–4.0 mm, respectively.
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ing the results of microwave analog measurements have been reviewed by Gustafson
(2000) and Mishchenko et al. (2000c).  Recent results include a laboratory compari-
son of the backscattering ability of raindrops and ice particles (Qingan et al. 1998), a
systematic experimental study of the angular and wavelength dependence of the in-
tensity and polarization of light scattered by aggregated particles (Gustafson and
Kolokolova 1999), laboratory measurements of the polarimetric radar signatures of
spherical and spheroidal water droplets at 30GHz (Tazaki et al. 2000), and the use of
microwave analog measurements for heterogeneous objects in testing the validity of
various effective-medium theories (Kolokolova and Gustafson 2001).

Figure 8.4 gives an example of microwave analog measurements.  The scattered
intensity and the degree of linear polarization QP )()( 11 ΘΘ ab−=  are shown for un-
polarized light incident on a thin acrylic plate in random orientation (Waldemarsson
and Gustafson 2000).  The diameter of the plate is 50.8 mm, the thickness is 1.52 mm,
and the relative refractive index is 1.62 + i0.003.  The total number of orientations
used to simulate the uniform orientation distribution was 1620 and the tilt angle be-
tween the normal to the plane facets of the plate and the spin axis was varied in °10
steps.  Measurement results were averaged over the wavelength intervals 2.7–3.0 mm
and 3.5–4.0 mm.  The experiment was designed to model the scattering of unpolar-
ized visible light by randomly oriented silicate flakes with diameter 8 µm and thick-
ness 0.25 µm in the wavelength intervals 0.44–0.49 µm (“blue”) and 0.57–0.65 µm
(“red”).  The fine structure in the curves is mostly due to the limited number of ori-
entations used in the ensemble averaging.  The implications of these laboratory results
will be discussed in Section 10.4.

Radars form a special class of instruments providing active polarization measure-
ments for remote targets at microwave and radiowave frequencies.  Monostatic radars
use the same antenna to transmit and receive electromagnetic waves and are limited to
measurements at the exact backscattering direction ).180( °=Θ  Bistatic lidars use one
or more additional receiving antennas, which provide supplementary information for
other scattering angles.  Remote sensing applications of the radar technique have been
reviewed by Aydin (2000) and Bringi and Chandrasekar (2001).





Part III

Scattering and Absorption Properties of Small
Particles and Illustrative Applications
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There are two classes of problems involving electromagnetic scattering by small par-
ticles:  the direct problem and the inverse problem.  Thus far, we have dealt primarily
with the direct problem of calculating or measuring the scattering by a known, well-
defined system.  The so-called inverse problem is to characterize a system of interest
using scattering data collected from laboratory measurements or remote sensing ob-
servations.

Given the unlimited diversity of particle types in nature and in the laboratory, one
may expect a significant variability in the optical properties of particles encountered
in different applications.  Therefore, solving the inverse problem may often be facili-
tated by previous knowledge of how the various absorption and scattering properties
of small particles may depend on the particle size parameter, morphology, relative
refractive index, and orientation.  This knowledge may be the cumulative result of
analyzing many specific cases supplemented by careful interpolation or extrapolation
to the range of particle characteristics not specifically covered by existing theoretical
or experimental results.

The purpose of the following two chapters is to discuss the current understanding
of the optical properties of small particles.  Although we have not attempted an ex-
haustive summary of all published results, we hope that these chapters will provide
useful information to those interested in a preliminary qualitative or semi-quantitative
analysis of a specific problem as well as to those evaluating the feasibility of a more
precise quantitative solution and considering various solution approaches.  We also
discuss a few selected applications which demonstrate the great potential of electro-
magnetic scattering as a noninvasive particle characterization and remote sensing
tool.
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Chapter 9

Scattering and absorption properties of spherical
particles

The decisive advantages of the Lorenz–Mie theory compared to any other theoretical
technique are its unparalleled numerical accuracy, high computational efficiency, and
applicability to essentially any size parameter and relative refractive index. These attrib-
utes permit a comprehensive study of electromagnetic scattering by at least one class of
small particles, viz., isotropic and homogeneous spheres.  Although a substantial fraction
of the particles encountered in natural and laboratory conditions are nonspherical, the
Lorenz–Mie theory provides a first-order description of many optical effects that are
common to all small particles and may not be intuitively obvious.  Furthermore, there are
many practical situations in which the scattering particles in question are almost, if not
precisely, spherical so that the Lorenz–Mie theory can be expected to apply directly.
Hence our approach is to begin by a detailed analysis of the scattering and absorption
properties of spherical particles and continue, in the following chapter, with a discussion
of the effects caused by particle nonsphericity.  All numerical data discussed in this
chapter have been computed using the Lorenz–Mie code described in Section 5.10 and
the ray-tracing code described by Macke and Mishchenko (1996).

9.1 Monodisperse spheres

Two properties of the extinction efficiency factor extQ  make it often a more conven-
ient quantity to display than the extinction cross section.  First, )( 2

extext rCQ π=  is a
function of the dimensionless size parameter 12 λπrx =  (subsection 5.8.2), whereas
the extinction cross section extC  itself depends on both the particle radius, r, and the
wavelength in the surrounding medium, .1λ   Second, Eq. (7.12) shows that, in the
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large-particle limit, extC  is proportional to the second power of r and hence may span
many orders of magnitude, depending on the range of particle radii displayed,
whereas the asymptotic value of extQ  is 2 and its maximum value is often not much
greater than the asymptotic value.

The solid curve in Fig. 9.1 shows the extinction efficiency factor extQ  as a func-
tion of size parameter for monodisperse spherical particles with a relative refractive
index m = 1.4, and the dotted curve depicts the asymmetry parameter .cos �� Θ   Since
the imaginary part of the relative refractive index is here set at zero, the scattering
efficiency factor is equal to the extinction efficiency factor, the absorption efficiency
factor is equal to zero, and the single-scattering albedo is equal to unity.  In agreement
with Eqs. (7.3), (7.7), and (7.12), both extQ  and �� Θcos  rapidly vanish as x ap-
proaches zero, and extQ  tends to its asymptotic value 2 as .∞→x   In the intermedi-
ate (so-called resonance) region of size-parameter values, the extinction efficiency
factor can exceed the geometrical optics value, 2, especially as the real part of the
relative refractive index is increasing (cf. Fig. 9.2).

Both curves in Fig. 9.1 are characterized by a succession of major low-frequency
maxima and minima with superimposed high-frequency ripples composed of sharp,
irregularly spaced extrema, some of which are super-narrow spike-like features.  The
major maxima and minima are called the “interference structure” since, as tradition-
ally explained, they are the result of interference of the light diffracted and
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Figure 9.1.  Extinction efficiency factor extQ  (solid curve) and asymmetry parameter �� Θcos
multiplied by a factor of 4 (dotted curve) versus size parameter x  for monodisperse spherical
particles with a relative refractive index m = 1.4.
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transmitted by the particle (van de Hulst 1957; Chýlek and Zhan 1989; Lock and
Yang 1991).  A light ray passing through the center of a sphere acquires a phase shift

),1(2 R −= mxρ  where Rm  is the real part of the relative refractive index.  There-
fore, constructive and destructive interference and, thus, maxima and minima in the
extinction efficiency curve, occur successively at intervals π2≈  in ρ  (see Fig. 9.3,
which shows extQ  as a function of ρ  for monodisperse spheres with various real
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Figure 9.2.  Extinction efficiency factor extQ  versus size parameter x  for monodisperse
spherical particles with relative refractive indices m = 1.3, 2, and 4.
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relative refractive indices).  With ,R ∞→m  the central transmitted rays are increas-
ingly attenuated by the external reflection, and the interference structure becomes less
pronounced (cf. Fig. 9.2) and ultimately disappears (Chýlek and Zhan 1989).

Unlike the interference structure, the ripple is caused by the resonance behavior of
the Lorenz–Mie coefficients na  and nb  (see, e.g., the review by Hill and Benner
(1988) and references therein).  The resonances in lower-order coefficients are rela-
tively broad and often overlap.  As n increases, the resonance features become nar-
rower, and starting with n ~ 20 (for m = 1.4) each feature in the ripple structure can
be identified with an individual resonance in the corresponding partial coefficient na
or .nb   As the size parameter approaches a resonant value, the denominator of a Lo-
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Figure 9.3.  Extinction efficiency factor versus phase shift for monodisperse spherical particles
with relative refractive indices m = 1.05, 1.15, 1.4, and 2.  The vertical scale applies to the
curve for m = 1.05, the other curves being successively displaced upward by 2.
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renz–Mie coefficient na  or nb  approaches a local minimum, thereby causing a local
extremum (maximum or minimum) in the curve for a specific scattering characteris-
tic.  Accordingly, the numbers of spike-like extrema in the two curves in Fig. 9.1 are
identical, and a sharp local maximum in the extinction curve always corresponds to a
sharp local minimum in the asymmetry parameter curve.  Some of the resonance fea-
tures can be extremely narrow.  This is demonstrated in Fig. 9.4, which shows the
angular profile of the resonance centered at x ≈ 38.9983.  The dots indicate the sam-
pling resolution used in Fig. 9.1, illustrating that it is just coincidence that the reso-
nance depicted in Fig. 9.4 is resolved in Fig. 9.1.

Figure 9.5 demonstrates that the resonance features shown in Fig. 9.4 are not sim-
ply an isolated peak in extQ  and an isolated hollow in .cos �� Θ   Instead, Fig. 9.4 de-
picts merely a cross section (corresponding to m = 1.4) of a long crest and a co-
located long canyon appearing in the surface plots of extQ  and ,cos �� Θ  respectively,
as functions of size parameter and real relative refractive index.  It is interesting that
the middle of the crest and the middle of the canyon in Fig. 9.5 follow the curves mx
= constant.  This means that, for a given resonance, increasing the relative refractive
index shifts the location of the maximum in extQ   (and the minimum in )cos �� Θ  to-
wards smaller size parameters.

It is straightforward to show (Chýlek 1973; Probert-Jones 1984) that the Lorenz–
Mie coefficients given by Eqs. (5.219) and (5.220) can be expressed as

6105 − 6102 − 6101 −5101 −× 0Im(m) = 

Asymmetry parameter    3×
Extinction efficiency factor

Size parameter
38.99 3938.995

2.1

2.2

2.3

2.4

2.5

2.6

× × ×

Figure 9.4.  Profile of the resonance centered at x ≈ 38.9983 for 4.1R =m and five values of
.Im   The dots show the sampling resolution used in Fig. 9.1.
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Figure 9.5.  High-resolution surface plots of the extinction efficiency factor and asymmetry
parameter versus size parameter and relative refractive index for monodisperse nonabsorbing
spherical particles.
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where

),()()()(),( xxxxxp nnnnn mmmm ψψψψ ′−′=    (9.3)

),()()()(),( xxxxxq nnnnn mmmm ψχχψ ′+′−=    (9.4)

),()()()(),( xxxxxr nnnnn ψψψψ ′−′= mmmm    (9.5)

),()()()(),( xxxxxs nnnnn χψψχ ′+′−= mmmm    (9.6)

and )()( xxyx nn −=χ  (cf. Eqs. (5.218) and (C.1)).  The convenience of writing
),( mxan  and ),( mxbn  in this form is that the functions ),,( mxpn  ),,( mxqn

),,( mxrn  and ),( mxsn  are real if the relative refractive index is real.  The denomi-
nators of Eqs. (9.1) and (9.2) can vanish completely only for complex size parame-
ters, whereas for real size parameters they always remain finite.  Therefore, what hap-
pens at a resonance is that either ),( mxqn  or ),( mxsn  vanish.  For this specific set of
x-, m-, and n-values, the real part of ),( mxan  or ),( mxbn  reaches its maximum pos-
sible value, unity, and the imaginary part vanishes (Chýlek 1976).  Accordingly,
quantities like ),(Re mxan  and |),(| mxan  or ),(Re mxbn  and |),(| mxbn  exhibit a
local maximum, thereby causing spikes in the two-dimensional extinction and scat-
tering curves corresponding to fixed m or x (cf. Eqs. (5.156) and (5.157)).  Thus Eqs.
(9.4) and (9.6) give the following mathematical condition for a resonance:

0)()()()( =′+′− xxxx nnnn mmm ψχχψ  (9.7a)

or

.0)()()()( =′+′− xxxx nnnn χψψχ mmm  (9.7b)

Note that for given n and m, these equations have infinitely many solutions at discrete
values of x.

Another way to look at resonances is to consider the complex size-parameter
plane (though still with the restriction of a real relative refractive index) and write

),( mxan  or ),( mxbn  as a simple pole, e.g.,

,),(
zx

xan −
= α

m    (9.8)
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where z is the position of the pole and α  is the residue (Conwell et al. 1984; Hunter
et al. 1988).  The resonant size parameter is then given by the real part of z.

A physical interpretation of resonances is that of a situation where rays propagate
around the inside surface of a spherical particle, confined by an almost total internal
reflection (Hill and Benner 1988):  the rays approach the internal surface at an angle
beyond the critical angle and are totally reflected each time.  After propagating
around the sphere, the rays return to their respective entrance points exactly in phase
and then follow the same path all over again without being attenuated by destructive
interference.  Therefore, it takes longer for the electromagnetic energy of the rays to
leak out of the sphere, and very large energy densities can be accumulated inside the
particle near its surface.  Since the accumulated energy is removed from the incident
beam, the result of the resonance process is an increased extinction efficiency of the
particle.  It can be shown that the longer the internal path of the rays, the narrower the
resonance  (e.g., Roll and Schweiger 2000).

For a fixed m and each index n, there is a sequence of resonance x-values for ei-
ther ),( mxan  or .m),(xbn  Hence it is convenient to label each local extremum with
the type of mode causing the resonance (a or b), the subscript n, and a superscript l
indicating the sequential order of x (Chýlek 1976; Chýlek et al. 1978).  This labeling
convention is illustrated in the upper panel of Fig. 9.6, which shows the resonance
extinction features for a water droplet within the interval ].51,50[∈x   The main traits
of the resonance features are that their width decreases as n increases for a given l and
their width increases as l increases for a given n.  For n greater than about 50, the l = 1
resonance can become extremely narrow, as demonstrated in the lower panel of Fig.
9.6.

Figure 9.4 shows the behavior of the super-narrow resonance centered at x ≈
38.9983 (for )4.1=m  with increasing imaginary part of the relative refractive index

.Im  It is seen that raising Im  from 0 to a very small value of 510−  almost completely
destroys this spike-like feature while causing no change whatsoever in the back-
ground extQ  and �� Θcos  values.  It takes significantly greater -Im values to elimi-
nate the broader resonances and still greater values (of order 0.1) to eliminate the in-
terference structure (Figure 9.7).  This is not surprising.  Indeed, the diffracted rays
are unaffected by absorption, whereas attenuation of the transmitted rays gives
weaker interference in the near-forward direction and a decrease in amplitude of the
interference structure.  The transmitted rays are attenuated as they pass through the
center of the sphere and thus travel inside the particle a distance equal to one sphere
diameter.  The super-narrow resonances correspond to much longer internal ray paths
(several sphere circumferences) and are much more stronly affected by internal ab-
sorption.  Therefore, measurements within super-narrow resonances can be far more
sensitive to weak absorption than measurements in the “continuum” or within broader
ripple features.

It appears that manifestations of the ripple structure can be even more spectacular
in the elements of the scattering matrix than in the optical cross sections and the
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asymmetry parameter (Mishchenko and Lacis 2000).  Since the normalized Stokes
scattering matrix (4.65) for a fixed relative refractive index depends on two variables,
viz., the size parameter x and the scattering angle ,Θ  it is convenient to visualize the
elements of this matrix using two-dimensional color images plotted with fine angular
and size-parameter sampling resolutions.

Plate 9.1 shows the degree of linear polarization of scattered light for an unpolar-
ized incident beam, =−= scasca IQPQ (%),11 ab−  as a function of Θ  and x for
monodisperse spheres with a relative refractive index m = 1.4.  This image was
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Figure 9.6.  (a) Ripple structure of extinction by a water droplet )10i33.1( 8−×+=m  on the
interval [50, 51] of size parameters.  (b) High-resolution profile of the resonance .1
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created using sampling resolutions °= 31∆Θ  and .05.0∆ =x  With the exception of
the region of Rayleigh scattering (x � 2; cf. the lowest panel of Fig. 7.1), the entire
polarization image is a field of sharp, alternating maxima and minima.  The frequen-
cies of the maxima and minima over both Θ and x increase with increasing size pa-
rameter.  This very complex “butterfly” structure, which appears both to be chaotic
and to reveal a slightly perceptible order, was first discovered by Hansen and Travis
(1974) and results from interference and resonance effects for particles of a single
size.  In their paper published 30 years ago, Hansen and Travis could use only white
and black and, therefore, blackened the regions of positive polarization and left the
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Figure 9.7.  The set of curves (bottom to top) shows the effect of increasing absorption on the
interference and ripple structure of the extinction efficiency factor for monodisperse spherical
particles with real part of the relative refractive index =Rm 1.4.  The vertical axis scale applies
to the curve with ,0I =m  the other curves being successively displaced upward by 2.
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regions of negative polarization white.  The use of the continuous color bar shown in
Plate 9.1 allowed us to build a complete image of the butterfly structure with a de-
tailed gradation of the magnitude of polarization as well as its sign.

Plate 9.2 provides a zoomed image of a small part of the field covered by Plate 9.1
and reveals with much greater detail the enormous complexity of the scattering pat-
tern.  Now the sampling resolution °= 1.0(∆Θ  and )007.0∆ =x  is fine enough to
exhibit several horizontal “dislocations” or “anomalous strips”, which are first indi-
cators of super-narrow resonances.  One of these is centered at x ≈ 38.9983 and is
shown with even greater sampling resolution °= 05.0(∆Θ  and )00001.0∆ =x  in the
top middle panel of Plate 9.3.  The top left and top right panels of this plate depict the
ratios 13 aa  and 12 ab  and demonstrate an immense degree of variability within the
resonance, including drastic changes of sign and strong dependence on scattering an-
gle.  The latter is not surprising, since the corresponding resonance Lorenz–Mie coef-
ficient contributes differently to the different expansion coefficients appearing in Eqs.
(4.75)–(4.80) (see also Eqs. (4.109)–(4.114) and (5.160)–(5.162)).  In consequence,
its effect on the scattering matrix elements is different at different scattering angles.
This conclusion is corroborated by Fig. 9.8, which shows a very strong angle-
dependent change in the phase function 1a  within the resonance, including a sharp
peak at the backscattering direction.

The middle three panels of Plate 9.3 are analogous to the top three panels, but

Figure 9.8.  High-resolution surface plot of the phase function within the super-narrow reso-
nance centered at x ≈ 38.9983 for monodisperse spherical particles with m = 1.4.
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show the degree of linear polarization computed for three increasing values of the
imaginary part of the relative refractive index.  Although most polarization features
within the resonance gradually weaken and ultimately disappear, the super-narrow
minimum located at °≈177Θ  and x ≈ 38.99828 for 0I =m  (the top middle panel of
Plate 9.3) becomes much more pronounced and shifts toward larger Θ and x before it
finally disappears at .10 4

I
−=m  This behavior is quite different from that observed

for extQ  and �� Θcos  (Fig. 9.4).
The bottom three panels of Plate 9.3 show the degree of linear polarization versus

Θ and Rm  for x = 38.9983 and .0I =m  Interestingly, these panels are hardly distin-
guishable from the top three panels.  This suggests again that, at least for nonabsorb-
ing particles, the behavior of super-narrow resonances is determined by the product of
the relative refractive index and size parameter rather than by each of these quantities
separately.  This also means that precise measurements of super-narrow resonances
can be used not only for particle sizing but also for an accurate determination of the
relative refractive index, provided that the particle size is already known.

A question that is naturally raised is whether the super-sharp resonances are
physically “real”, or are artifacts of a too-literal application of the theoretical macro-
scopic concept of “sphere” to microscopic objects.  However, high-quality laboratory
data, e.g., measurements of the intensity of light scattered by a gradually evaporating
glycerol micro-droplet (Chýlek et al. 1992), provide an impressive experimental
demonstration of the actual occurrence of this phenomenon and its practical useful-
ness as an optical particle-characterization tool (Section 9.7).  As follows from the
previous discussion, high-precision measurements within super-narrow resonances
should be particularly useful for accurate particle sizing, determining the real part of
the relative refractive index, and detecting minute deviations of the imaginary part of
the relative refractive index from zero.

The extreme sharpness of some resonances may also help explain some of the mi-
nor, but nevertheless perplexing, differences that sometimes appear in intercompari-
sons of the Lorenz–Mie results for polydisperse spheres obtained by different groups
(e.g., Boucher et al. 1998).  In view of the fact that the Lorenz–Mie theory is exact,
one would expect that, for given values of particle size and relative refractive index,
precise agreement must be found for the resultant Lorenz–Mie parameters to many
significant figures.  Thus, the first step in such intercomparisons should be to verify
that the Lorenz–Mie codes produce identical results for the same monodisperse size
parameter and relative refractive index.  Since the polydisperse scattering characteris-
tics involve integration over a size distribution of particles (Section 3.2) with a num-
ber of integration points large enough to provide the desired numerical accuracy
(Section 5.10), it is clear from the results in Figs. 9.1 and 9.4 that convergence may
not be uniformly monotonic as the number of integration points is increased.  Indeed,
if an integration mesh point hits a sharp resonance, there may be an apparent local
discontinuity that is greater than 5% compared to the background value.  Hence for
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precise Lorenz–Mie scattering characteristics, an exceedingly high resolution in size
parameter space may be needed to resolve the resonance features fully.

9.2 Effects of averaging over sizes

Most natural and artificial ensembles of spherical particles do not exhibit the spike-
like resonances described in the previous section because even a narrow polydisper-
sion washes out features that strongly depend on particle size.  Figure 9.9 illustrates
the effect of increasing width of the size distribution on the extinction efficiency fac-
tor for the gamma size distribution, Eq. (5.245), of spherical particles with a relative
refractive index m = 1.4.  The figure shows =extQ ���� GCsca  versus effective size
parameter eff1eff rkx =  for five increasing values of the effective variance ,effv  where

1k  is the wave number in the surrounding medium and �� scaC  and ��G  are the en-
semble-averaged scattering and geometrical cross sections per particle, respectively.
The effective radius effr  and the effective variance effv  are defined by Eqs. (5.248)
and (5.249) and, for the gamma distribution with 0min =r  and ,max ∞=r  coincide with
the parameters a and b of Eq. (5.245), respectively.  (The computational meaning of
the upper limit ∞=maxr  was discussed in subsection 5.10.1.)  Figure 9.10 demon-
strates the broadening of the size distribution with increasing effv  while the effective
radius is kept constant.  Note that the size distribution with 0eff =v  corresponds to
monodisperse particles with radius ,effrr =  the effective variance values in the range
[0.05, 0.1] are characteristic of sulfuric acid particles forming the clouds on Venus
(Hansen and Hovenier 1974), and the value 2.0eff =v  is typical of water cloud parti-
cles in the Earth’s atmosphere (Mazin and Khrgian 1989).

As was the case with increasing absorption, increasing the width of the size distri-
bution first extinguishes the ripple and then eliminates the interference structure in

.extQ   It is in fact remarkable that as narrow a dispersion of sizes as that correspond-
ing to 01.0eff =v  completely washes out the ripple structure.  The first major maxi-
mum of the interference structure persists to larger values of ,effv  but eventually
fades away too.  For distributions with effv � 0.2, the only surviving features are the
reddening at small size parameters discussed in Section 7.1 and the asymptotic geo-
metrical optics trend 2ext →Q  as ∞→x  discussed in Section 7.4.

The presence of the first maximum of the interference structure for relatively nar-
row size distributions creates the possibility of an infrequent phenomenon for which
aerosol particles of just the right size have a lower extinction efficiency factor in the
blue than that at the larger wavelengths in the red.  Thus, in contrast to the familiar
reddening of the setting sun owing to enhanced Rayleigh scattering, a sufficiently
narrow size distribution of aerosol particles in the atmosphere, with an average size
such that 4 � )1(2 R −mx � 7 for visible wavelengths (cf. Fig. 9.3), can produce a blue
cast to the sun or moon and is perhaps responsible for the implied rarity associated
with the phrase, “once in a blue moon” (cf. Bohren and Huffman 1983, Chapter 4;
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Lynch and Livingston 1995).
Plate 9.4 shows the evolution of the linear polarization pattern with increasing

width of the size distribution.  The case 01.0eff =v  demonstrates that even a very
narrow size distribution is sufficient to extinguish most of the interference and reso-
nance effects.  With increasing ,effv  the maxima are smoothed out, the minima are
filled in, and the polarization becomes more neutral. Additional effects of increasing

effv  are the depression to smaller size parameters of the region of maximal polariza-
tion corresponding to Rayleigh scattering and the erosion of the bridge of positive
polarization connecting the Rayleigh region and the area of positive polarization at
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Figure 9.9.  The effect of increasing width of the size distribution on the interference and ripple
structure in extQ  for nonabsorbing spherical particles with relative refractive index 1.4.  The
vertical axis scale applies to the curve with ,0eff =v  the other curves being successively dis-
placed upward by 2.
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scattering angles around .160°   The island of positive polarization at effx ~ 10 and Θ
~ °25  for 01.0eff =v  is an anomalous diffraction feature produced by the interfer-
ence of diffracted light and light reflected and refracted by the particles in the near-
forward direction (Hansen and Travis 1974).  The magnitude of this feature strongly
depends on the width of the size distribution: the feature significantly weakens as effv
increases from 0.01 to 0.07 and has completely disappeared for .2.0eff =v   All these
effects of broadening the size distribution are easy to understand qualitatively in terms
of taking weighted averages along vertical lines of increasing length in the polariza-
tion diagram for monodisperse particles.

9.3 Optical cross sections, single-scattering albedo, and
asymmetry parameter

In the rest of this chapter we will analyze the scattering and absorption properties of
polydisperse spherical particles.  Most of the illustrative examples will be based on
computations for the gamma distribution of particle radii with ,0min =r  ,max ∞=r
and a fixed effective variance .15.0eff =v   The latter is a value characteristic of a size
distribution that is neither particularly narrow nor broad.

Figure 9.11 presents surface plots of the extinction efficiency factor versus effec-
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Figure 9.10.  Gamma size distribution ),(rn  Eq. (5.245), with ,0min =r  ,max ∞=r  =effr 1 (in
arbitrary units of length), and =effv 0, 0.01, 0.05, 0.1, and 0.2.  The size distribution is nor-
malized according to Eq. (3.26).
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tive size parameter and real part of the relative refractive index, for four values of the
imaginary part ranging from 0 to 0.3.  Figures 9.12–9.16 are analogous to Fig. 9.11
and present visualizations of the scattering and absorption efficiency factors, the sin-
gle-scattering albedo, the asymmetry parameter, and the radiation-pressure efficiency
factor. The 51 refractive index gridlines are drawn at 0.02 intervals and correspond to
relative refractive indices m = 0.8, 0.82, … 1.78, and 1.8.  The 81 size parameter
gridlines are drawn at 0.5 intervals and correspond to size parameters effx = 0, 0.5, 1,
…, 39.5, and 40.

The upper left panel of Fig. 9.11 shows that the first interference maximum in
extQ  indeed follows the curves constant,|1| Reff =−mx  as discussed in Section 9.1.

For m = 1, both extQ  and scaQ  vanish because there is no scattering and absorption
when the particle refractive index matches that of the nonabsorbing surrounding me-
dium.  This does not mean, however, that dimensionless quantities such as the single-
scattering albedo, the asymmetry parameter, and the phase function must also disap-

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3Qext

Qext Qext

Qext

Figure 9.11.  Extinction efficiency factor versus effective size parameter and real part of the
relative refractive index for a gamma size distribution of spherical particles with =effv 0.15.
The imaginary part of the relative refractive index varies from 0 to 0.3.
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pear as .1→m  All of these are ratios of vanishing quantities and remain finite in the
mathematical sense as the particle refractive index approaches that of the surrounding
medium.  The extinction and scattering efficiency factors tend to zero as .0eff →x  In
the limit ,eff ∞→x  the extinction efficiency factor approaches the geometrical optics
value 2.  As Im  increases from 0 to 0.3, the first interference maximum in both extQ
and scaQ  weakens and almost disappears, except for Rm  close to 1.8.  With the ex-
ception of Rm  close to unity, the scattering efficiency factor in Fig. 9.12 decreases
with increasing .Im  With either ∞→Im  or ,R ∞→m  scaQ  for very large particles
asymptotically approaches the value for a perfect reflector, i.e., .2sca →Q

The absorption efficiency factor is zero for Im = 0 but rapidly grows with in-
creasing imaginary part of the relative refractive index (Fig. 9.13).  It can even exceed
unity in the resonance region of the size parameters, which means that a particle can
absorb significantly more power than the value obtained by multiplying the incident
intensity by the area of its geometrical cross section.  This phenomenon shows that

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

QscaQsca

Qsca Qsca

Figure 9.12.  As in Fig. 9.11, but for the scattering efficiency factor.
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spherical particles can perturb the electromagnetic field far beyond their physical con-
fines and illustrates once again the limited applicability of the geometrical optics ap-
proximation, which predicts that the absorption efficiency factor cannot exceed unity.
As ,I ∞→m  the particles become perfect reflectors, and absQ  vanishes.

The single-scattering albedo is identically equal to unity for nonabsorbing parti-
cles but almost vanishes for ≈Rm 1 and small ,Im  because essentially all the light
extracted by the particles from the incident beam is absorbed rather than scattered (the
upper right and lower left panels of Fig. 9.14).  As Im  deviates from zero, the single-
scattering albedo vanishes in the Rayleigh region, in accordance with Eqs. (7.3) and
(7.4), decreases for all Rm  and ,effx  and develops a feature resembling the first inter-
ference maximum in extQ  and .scaQ  With the exception of -Rm values close to unity
coupled with small or zero ,Im  the single-scattering albedo depends only weakly on
the real part of the relative refractive index.  In the limit ,I ∞→m  the single-
scattering albedo reaches the asymptotic value unity for perfectly reflecting spheres.
For particles much larger than the wavelength, ϖ  cannot be smaller than 0.5.  Indeed,
this value can only be reached when the ray-tracing scattering cross section in Eq.

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3Qabs

Qabs

Qabs

Qabs

Figure 9.13.  As in Fig. 9.11, but for the absorption efficiency factor.
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(7.13) vanishes, which implies that all light striking the particle is refracted into the
particle and is internally absorbed.

The asymmetry parameter, ,cos �� Θ  is zero for very small particles, in agreement
with the prediction of the Rayleigh approximation, but then rapidly grows as effx
increases from 0 to about 2 (Fig. 9.15).  Then it remains positive, thereby indicating
forward-scattering particles, and shows little dependence on the particle size parame-
ter.  For particles with m ≈ 1, �� Θcos  becomes independent of m and depends on the
size parameter according to the Rayleigh–Gans approximation (Irvine 1963).  In par-
ticular, for very large nonabsorbing particles with m ≈ 1, �� Θcos  can reach values
approaching unity because the diffraction lobe becomes extremely narrow, there are
no reflected rays, and the incident rays striking the particle pass through it essentially
undeviated.  The asymmetry parameter becomes almost independent of Rm  for
strongly absorbing particles (lower right panel of Fig. 9.15) because the scattered light

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

ϖ ϖ

ϖ ϖ

Figure 9.14.  As in Fig. 9.11, but for the single-scattering albedo.
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is dominated by the diffracted and externally reflected components.  As ∞→Rm  or
,I ∞→m  the asymmetry parameter for very large particles tends to 1/2 because half

the scattered radiation is diffracted in the forward direction and half is externally re-
flected.  The reflected rays are isotropically distributed (van de Hulst 1957) and make
no contribution to ,cos �� Θ  whereas �� Θcos  for the diffracted light is unity, Eq.
(7.17), thereby yielding total asymmetry parameter equal to 1/2.  In the limit 0→x
and ∞→Rm  or ,I ∞→m 4.0cos −→�� Θ  (van de Hulst 1957, Section 10.61).

In a similar way to the extinction and scattering efficiency factors, the radiation-
pressure efficiency factor prQ  vanishes for very small particles and particles with

.1≈m  prQ  in Fig. 9.16 always increases with Im  and, for nonabsorbing and mildly
absorbing spheres, always increases as Rm  increases from 1 to 1.8.  However, the
dependence on the real part of the relative refractive index weakens as Im  reaches the
value 0.3.  In the limit ∞→Im  or ,R ∞→m  the radiation pressure efficiency factor
for very large particles approaches that of a perfect reflector, i.e., .1pr →Q

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

〉〈 Θcos

〉〈 Θcos

〉〈 Θcos

〉〈 Θcos

Figure 9.15.  As in Fig. 9.11, but for the asymmetry parameter.
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9.4 Phase function )(1 Θa

Many phase function features for particles larger than the incident wavelength (Fig.
7.4) can be explained through the concepts of geometrical optics, using the terminol-
ogy introduced in Fig. 9.17.  Specifically, the concentration of light near °= 0Θ  is
caused by diffraction (i = 0 in Fig. 9.17).  The external reflection (i = 1) does not gen-
erate any distinctive feature, whereas the twice refracted rays (i = 2) cause a broad
enhancement of the phase function in the forward-scattering hemisphere.

The features in Fig. 7.4 at °≈137Θ  and °130  for m = 1.33 °160(  and °88  for m
= 1.53) are the primary and secondary rainbows generated by i = 3 and i = 4 rays,
respectively.  To explain the origin of the rainbows, one needs to express the scatter-
ing angle Θ  of the emerging ray as a function of the local angle of incidence

]90 ,0[ °°∈α  (Fig. 9.17) for i = 3, 4, … .  This is always possible because the entire
ray path remains in the plane containing the incident ray and the center of the sphere.
When the derivative ααΘ d)(d i  vanishes, the scattering angle becomes nearly con-
stant for a range of incidence angles, thereby causing an increased concentration of

Qpr

Qpr Qpr

Qpr

Im(m) = 0.002Im(m) = 0

Im(m) = 0.01 Im(m) = 0.3

Figure 9.16.  As in Fig. 9.11, but for the radiation-pressure efficiency factor.
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emerging rays.  The respective scattering angle is called the rainbow angle.  The con-
dition 0d)(d =ααΘ i  implies that the rainbow angles correspond to extrema of the
functions ).(αΘ i   Whether the extremum is a minimum or a maximum depends on i.
The primary rainbow angle °137  for m = 1.33 °160(  for m = 1.53) corresponds to a
minimum in )(3 αΘ (ray 7 in Fig. 9.18), whereas the angle °130  for m = 1.33 °88(  for
m = 1.53) corresponds to a maximum of ).(4 αΘ  As a consequence, there is a low-
intensity zone (about °7  wide for m = 1.33 and °72  wide for m = 1.53) between the
primary and secondary rainbows (the so-called Alexander’s dark band), where the
phase function is mostly determined by the externally reflected rays (i = 1).  Note,

Contributions to
scattered light:

i = 0    Diffraction
1    External reflection
2    Twice refracted rays
3    One internal reflection
4    Two internal reflections

i = 0

i = 2

i = 4
i = 1

i = 3

α

Figure 9.17.  Geometrical optics representation of scattering by a large sphere with .1R >m
(After Hansen and Travis 1974.)
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Figure 9.18.  Ray-tracing diagram explaining the origin of the primary rainbow for a large
spherical particle with m = 1.33 (after Greenler 1980).  The diagram shows that incident rays
corresponding to a finite range of incidence angles α  emerge at almost the same scattering
angle, thereby creating a localized enhancement of intensity.  The respective scattering angle

°≈137Θ  is the angle of minimum deviation for i = 3.
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however, that both rainbow angles correspond to rays that experience the least cumu-
lative deviation from the initial incidence direction and hence are angles of minimum
deviation.  The slight change of the rainbow angle with wavelength caused by disper-
sion (change of the relative refractive index with wavelength) gives rise to the spec-
tacular colorful rainbows often observed during showers illuminated by the sun at an
altitude lower than about °40  (Lynch and Livingston 1995).

The maxima in Fig. 7.4 at °=119Θ  and °141  for m = 1.53 are the i = 6 and 7
rainbows, respectively.  A minor feature on the large-scattering-angle side of the pri-
mary rainbow results from the interference of two i = 3 rays corresponding to differ-
ent local incidence angles but emerging at the same scattering angle.  This feature is
called the first supernumerary bow and is not reproduced by the standard geometrical
optics.

The enhancement of intensity in the backscattering direction )180( °≈Θ  is called
the “glory” and can be seen from an airplane as a series of colored rings around the
shadow cast by the airplane on a cloud top (Lynch and Livingston 1995).  Obvious
but relatively weak contributors to the glory are the central rays )90( °=α  externally
(i = 1) and internally (i = 3, 5, …) reflected in the backscattering direction.  Snell’s
law predicts that for real relative refractive indices in the range ,22 2/1 ≤≤ m  a non-
central incident ray °<<° 900( α  in Fig. 9.17) may emerge at °=180Θ  after just
one internal reflection (i = 3, Fig. 9.19).  Furthermore, the ray shown in Fig. 9.19(a)
always interferes constructively with the conjugate ray propagating along the same
path but in the opposite direction, Fig. 9.19(b), thereby potentially doubling the i = 3
contribution to the backscattered intensity.  This contribution may partially account
for the intense glory in the phase function for m = 1.53 and 600eff =x  in Fig. 7.4.

However, this mechanism does not explain the equally pronounced glory gener-
ated by water droplets with )2( 33.1 2/1<=m  and .600eff =x  Therefore, it is often
claimed that a major contributor to the glory is that of the edge rays ),0( °≈α  which
set up so-called surface waves on the sphere.  The latter are not included in the geo-
metrical optics formulation and are discussed by van de Hulst (1957), Nussenzveig
(1992), and Grandy (2000).

Figures 9.20–9.22 illustrate the behavior of the phase function for nonabsorbing
polydisperse spheres in the Rayleigh and resonance regions of the effective size

(a) (b)

Figure 9.19.  Rays contributing to the glory for real relative refractive indices m in the range
.22 2/1 << m
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m = 0.8

m = 1

Figure 9.20.  Phase function versus effective size parameter and scattering angle for a gamma
size distribution of spherical particles with =effv 0.15 and two values of the relative refractive
index, m = 0.8 and 1.
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m = 1.2

m = 1.4

Figure 9.21.  As in Fig. 9.20, but for m = 1.2 and 1.4.
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m = 1.6

m = 1.8

Figure 9.22.  As in Fig. 9.20, but for m = 1.6 and 1.8.
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parameter.  The 91 scattering angle gridlines are drawn at °2  intervals and corre-
spond to scattering angles ,178...,,2,0 °°°=Θ  and .180°   The 81 size-parameter
gridlines are drawn at 0.5 intervals and correspond to effective size parameters effx =
0, 0.5, 1, …, 39.5, and 40.

In the Rayleigh limit ,0eff →x  the phase functions are nearly isotropic and are
given by

)cos1()( 2
4
3

0
1

eff

ΘΘ +=
→x

a    (9.9)

(see Eq. (7.5)).  As the effective size parameter increases, the phase functions become
anisotropic, owing to increased forward scattering and decreased backscattering.  The
phase functions exhibit the strongest variability with size parameter in the range
0 effx< � 20.  As effx  approaches 40, the phase functions for m = 1.2, 1.4, 1.6, and
1.8 begin to develop typical geometrical optics features such as the strong diffraction
peak, the primary rainbow, and the glory.  As m increases, the scattering angle of the
primary rainbow increases (cf. Liou and Hansen 1971; Liou 1980) and the glory be-
comes more pronounced.  The primary rainbow angle for m = 1.8 is so large

)176( °=Θ  that the rainbow essentially merges with the intense glory.  The rainbow
and the glory are absent in the Rayleigh–Gans phase function (the lower panel of Fig.
9.20) because particles with 1≈m  do not refract and reflect the incident light.  For
the same reason the forward-scattering peak for 1≈m  is noticeably stronger than that
for the other relative refractive indices (note that in the lower panel of Fig. 9.20 the
scale goes up to 10 000).  The phase function in the Rayleigh–Gans limit 1→m  be-
comes independent of m and depends only on the size parameter (Kerker 1969).
Large particles with m = 0.8 do not generate rainbows, but instead exhibit an inter-
esting horizontal “shelf ”  at side-scattering angles followed by a sharp decrease of
intensity at larger scattering angles.  The origin of this feature for real m smaller than
but close to 1 is explained in Fig. 9.23.  Rays with local incidence angles

m arccos>α  are twice refracted in the forward or near-forward directions, whereas
rays with m arccos<α  are totally externally reflected.  The scattering angle of the
externally reflected rays decreases with decreasing .α  Therefore, m arccos2=Θ  is
the critical scattering angle, beyond which the scattered intensity is expected to fall
rapidly.  This explanation is corroborated by Fig. 9.24, which shows the results of
geometrical optics and Lorenz–Mie computations of the phase function for a gamma
distribution of spherical particles with m = 0.8, ,600eff =x  and .07.0eff =v  As ex-
pected, a sharp precipice in the phase functions occurs at .73.74)8.0arccos(2 °=≈Θ

Figure 9.25 demonstrates the effect of increasing absorption on the phase func-
tions for .4.1R =m  Comparison with the lower panel of Fig. 9.21 shows that although
increasing Im  does not change the phase function for very small (Rayleigh) particles,
the phase functions for larger particles become significantly smoother.  The suppres-
sion of refracted rays )2( ≥i  weakens and ultimately extinguishes the rainbow and
the glory.  The scattering by large particles with 3.0I =m  is dominated by diffraction
and externally reflected rays, so that the phase function consists essentially of a strong
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Figure 9.23.  Ray-tracing diagram for a spherical particle with a real relative refractive index
that is less than but close to unity.
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Figure 9.24.  Geometrical optics and Lorenz–Mie phase functions for a gamma distribution of
spherical particles with m = 0.8, ,600eff =x  and .07.0eff =v
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m = 1.4 + i0.01

m = 1.4 + i0.3

Figure 9.25.  As in Fig. 9.20, but for m = 1.4 + i0.01 and 1.4 + i0.3.
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diffraction peak in the forward direction and nearly isotropic scattering in the back-
ward hemisphere.  As a consequence, the angular profile of the phase function be-
comes remarkably similar to that for m = 1 (lower panel of Fig. 9.20), although the
virtually zero contribution of the reflected rays in the case m = 1 makes the back-
ground phase function value in the backward hemisphere significantly lower.

9.5 Backscattering

Figure 9.26 shows that the phase-function value at °=180Θ  can vary by orders of
magnitude with changing size parameter and/or real and imaginary parts of the rela-
tive refractive index.  This variability makes difficult the analysis of backscattering
intensity measurements and explains the large amount of attention paid by those in-
terpreting radar and lidar observations to quantities like the average backscattering
cross section per particle,

,
4

)180(
d

d 1sca

180

sca
b πΩ Θ

°��==��
°=

aCCC   (9.10)

the average radar backscattering cross section per particle,

��=�� bb 4 Cπσ  (9.11)

the extinction-to-backscatter ratio,
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and the backscatter-to-extinction ratio

)180(1
ext

b
be °== a

C
R ϖ

σ
 (9.13)

(e.g., Battan 1973; Reagan et al. 1989; Stephens 1994).  The behavior of these back-
scattering characteristics is illustrated in Figs. 9.27 and 9.28, which show the back-
scattering efficiency factor

��

��=
G
CQ b

b  (9.14)

and the backscatter-to-extinction ratio as a function of effective size parameter for a
range of the real and imaginary parts of the relative refractive index.  Note that bQ
vanishes in the limit ,1→m  because particles with the refractive index equal to that
of the surrounding medium do not scatter light, whereas the dimensionless backscat-
tering phase function and backscatter-to-extinction ratio remain finite.

A common feature of ),180(1 °a ,bQ  and beR  is that the larger the imaginary part
of the relative refractive index, the faster they reach their respective geometrical



Scattering, Absorption, and Emission of Light by Small Particles268

0 10 20 30 40
10−3

10−2

10−1

1

10

B
ac

ks
ca

tte
ri

ng
 p

ha
se

 f
un

ct
io

n mR = 0.8 mI = 0

mI = 0.002

mI = 0.01

mI = 0.3

0 10 20 30 40
10−4

10−3

10−2

10−1

1

10

mR = 1

0 10 20 30 40
10−2

10−1

1

10

 

B
ac

ks
ca

tte
ri

ng
 p

ha
se

 f
un

ct
io

n mR = 1.2

0 10 20 30 40
10−2

10−1

1

10

 

mR = 1.4

0 10 20 30 40
10−2

10−1

1

10

Effective size parameter

B
ac

ks
ca

tte
ri

ng
 p

ha
se

 f
un

ct
io

n mR = 1.6

0 10 20 30 40
10−2

10−1

1

10

102

Effective size parameter

mR = 1.8

Figure 9.26.  Backscattering phase function )180(1 °a  versus effective size parameter for a
gamma distribution of spherical particles with =effv 0.15, Rm = 0.8, 1, 1.2, 1.4, 1.6, and 1.8,
and Im = 0, 0.002, 0.01, and 0.3.
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Figure 9.27.  As in Fig. 9.26, but for the backscattering efficiency factor.
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Figure 9.28.  As in Fig. 9.26, but for the backscatter-to-extinction ratio.
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optics limits with increasing .effx  An additional property of these backscattering
characteristics is that they almost always decrease with increasing Im  for Rm = 1.2,
1.4, 1.6, and 1.8.  For Rm = 0.8, they first decrease as Im  grows from 0 to 0.01 but
then significantly increase as Im  reaches the value 0.3 (except the backscatter-to-
extinction ratio for effx � 4).  The backscattering phase function and the backscatter-
to-extinction ratio for 1R ≠m  have a local minimum at small effective size parame-
ters, which is especially deep for m = 1.2.  The minimum becomes less pronounced
and eventually vanishes with increasing absorption.

9.6 Other elements of the scattering matrix

Plates 9.5 and 9.6 parallel Figs. 9.20–9.22 and 9.25 and show the ratios ,)()( 13 ΘΘ aa
,)()( 11 ΘΘ ab−  and )()( 12 ΘΘ ab  (in %) versus scattering angle Θ  and effective size

parameter.  The use of 21 discrete colors in these contour plots (with 20 contours at
±5%, ±15%, …, ±85%, and ±95%) allows the reader to quantify the diagrams using
white  as the reference.  The ratio )()( 11 ΘΘ ab−  is the degree of linear polarization

QP  for the scattering of unpolarized incident light provided that the Stokes parame-
ters are defined with respect to the scattering plane.  Furthermore, according to Eqs.
(1.112) and (4.14) the quantity )(|)(| 11 ΘΘ ab  gives the degree of linear polarization

LP  in the general case of the scattering of unpolarized incident light.  The signifi-
cance of this and the other two element ratios of the normalized Stokes scattering
matrix in cases involving polarized incident light and arbitrary incidence and scatter-
ing directions follows from Eq. (4.14).

In agreement with Eqs. (4.61), (4.62), and (4.66), the ratios )()( 11 ΘΘ ab−  and
)()( 12 ΘΘ ab  vanish at °= 0Θ  and ,180°  whereas 1)0()0( 13 =°° aa  and

.1)180()180( 13 −=°° aa
In the limit 0eff →x  Rayleigh scattering occurs.  In accordance with Eq. (7.5),

there is strong positive polarization with the maximal 100% value at scattering angle
,90°  whereas the ratio )()( 12 ΘΘ ab  vanishes completely.  The Rayleigh scattering

region is similar for all relative refractive indices but is compressed to smaller size
parameters for the larger values of m.  The ratio )()( 13 ΘΘ aa  is antisymmetric with
respect to scattering angle :90°  =−°−° )180()180( 13 ΘΘ aa .)()( 13 ΘΘ aa−

In the limit ,1→m  all three ratios become independent of size parameter and the
ratio )()( 12 ΘΘ ab  vanishes.  This is consistent with the well-known result of the
Rayleigh–Gans approximation, that the normalized Stokes scattering matrix is given
by
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(Kerker 1969).  The degree of linear polarization and the ratio )()( 13 ΘΘ aa  are the
same as for Rayleigh scattering.

In what follows we will normally omit the argument Θ  of the scattering matrix
elements. The ratio 13 aa  is almost always positive in the forward hemisphere, where
it is weakly dependent on relative refractive index and size parameter.  However, it
shows a considerable degree of variability with m and effx  in the backward hemi-
sphere.  The pattern of the ratio 12 ab  for most relative refractive indices and size
parameters consists of narrow regions of positive or neutral values at small and large
scattering angles separated by a wide region of negative values at side-scattering an-
gles.  Of the three ratios, the degree of linear polarization 11 ab−  exhibits the largest
degree of variability with relative refractive index and/or size parameter.  This ex-
plains the remarkable potential of polarimetry as a particle characterization and re-
mote sensing tool (Section 9.7).

With increasing ,effx  the scattering matrix starts to develop typical geometrical
optics features.  At small scattering angles the linear polarization is small because of
the predominance of unpolarized diffracted light (for unpolarized incident light).
Most of the light scattered in the near-forward direction is due to twice-refracted rays
(i = 2) and is negatively polarized, as follows from Fresnel’s equations.  Externally
reflected rays (i = 1) are positively polarized at all scattering angles.  As m increases,
the intensity of these rays increases too, especially for grazing values of the local in-
cidence angle α  (Fig. 9.17), and becomes sufficient to cause a long peninsula of
positive polarization values at scattering angles between °10  and °30  for m = 1.8.
The steep ridge of positive polarization in the two right-hand columns of Plate 9.5 for
m = 1.2, 1.4, 1.6, and 1.8 is the primary rainbow.  The weaker positive feature at Θ  ~

°165  for m = 1.2 and Θ ~ °110  for m = 1.4 is the secondary rainbow.  Although the
secondary rainbow can be reliably identified in the polarization maps, it is barely seen
in the respective phase function plots even for 40eff =x  (cf. Fig. 9.21).  For m = 1.2
the primary and secondary rainbow regions merge with the region of Rayleigh scat-
tering, whereas for m = 1.4, 1.6, and 1.8 these regions are separated by areas of neu-
tral or negative polarization.

The two columns on the right of Plate 9.6 illustrate the effect of increasing the
imaginary part of the relative refractive index on the ratios ,13 aa  ,11 ab−  and 12 ab
for .4.1R =m   The corresponding panels in Plate 9.5 and on the left of Plate 9.6 pro-
vide a comparison for .0I =m   For small effective size parameters the effect of in-
creasing Im  from 0 to 0.01 is relatively weak.  For large particles the absorption of
refracted rays )2( ≥i  results in a dominance of diffracted light and externally re-
flected rays.  The latter are positively polarized and, for m = 1.4 + i0.3, yield a polari-
zation pattern similar to that of Rayleigh and Rayleigh–Gans scattering (compare the
rightmost middle panel of Plate 9.6 with the rightmost top panel of Plate 9.5).  The
only significant difference is that the maximum of polarization occurs at the scattering
angle °=−°=′ 08.71arctan2180 RmΘ  rather than at ;90°  here R arctan m  is the
Brewster angle.  The bridge of positive 13 aa  values at Θ  ~ °165  fades out with
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increasing Im  and eventually disappears.  As a result, the pattern of the ratio 13 aa
for m = 1.4 + i0.3 also closely resembles that of Rayleigh and Rayleigh–Gans scat-
tering (compare the rightmost top panel of Plate 9.6 with the top panel of the second
column of Plate 9.5), except that the scattering angle of zero values is now Θ ′  rather
than 90°.  The ratio 12 ab  for large particles decreases with increasing imaginary part
of the relative refractive index and almost vanishes for .3.0I =m

9.7 Optical characterization of spherical particles

As we have mentioned previously, the potentially strong dependence of the scattering
properties of spherical particles on their size parameter and relative refractive index
makes measurements of electromagnetic scattering a powerful noninvasive means of
particle characterization.  In fact, there are so many applications of optical particle
characterization in laboratory and remote sensing research that simply listing them
would take an inordinate amount of space.  Therefore, we will describe only a few
selected examples, directing the reader for more details and further references to the
books by Kerker (1969), Bayvel and Jones (1981), Gouesbet and Gréhan (1988), Ste-
phens (1994), and Xu (2000), the feature journal issue edited by Hirleman and Bohren
(1991), and the recent review by Jones (1999).

 The lower curve in Fig. 9.29 depicts measurements of the intensity of the light
scattered by a slowly evaporating glycerol droplet at a scattering angle of approxi-
mately .90°   The droplet was illuminated by a linearly polarized laser beam at a
wavelength µm, 5145.01 =λ  the same beam being used to levitate the particle.  The
upper curve shows the results of Lorenz–Mie computations for a spherical droplet
with a radius ranging from 4.38 to 4.67 µm  and a relative refractive index of 1.4746
corresponding to that of glycerol at the visible wavelength.  Comparison of the two
curves demonstrates that by identifying the locations of the resonance features in the
experimental data the diameters of spherical droplets can be determined with extreme
precision. Chýlek et al. (1983) developed a technique for determining the relative
refractive index as well as the size of an optically levitated spherical particle illumi-
nated by a tunable dye laser.  The technique is based on analyzing both the wave-
lengths of the resonance peaks and the line profiles in the curve of the backscattered
intensity as a function of laser wavelength.  More recent developments have been
described by Huckaby et al. (1994), Ray and Nandakumar (1995), and Tu and Ray
(2001).

We already discussed in Section 8.1 the use of measurements of the Stokes scat-
tering matrix for sizing polydisperse water droplets (cf. Fig. 8.2).  Figure 9.30 illus-
trates another application of this technique.  The solid curves depict ratios of the ele-
ments of the normalized Stokes scattering matrix measured by Bottiger et al. (1980)
in the scattering-angle range °≤≤° 16512 Θ  for a spherical latex particle.  As the
source of light, Bottiger et al. used a He–Cd laser operating at a wavelength 441.6
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nm.  The electrostatic levitation technique allowed them to select a single particle and
trap it in a very small volume.  Bottiger et al. did not measure the size of the particle
and only indicated that the average diameter of latex microspheres used in their ex-
periments was 1091 nm with standard deviation 8 nm.  The results of monodisperse
Lorenz–Mie computations for the diameter 1091 nm and relative refractive index of
latex in air 1.588 showed no resemblance to the Bottiger et al. data (Mishchenko and
Mackowski 1996).  However, a very good agreement was found for the diameter
1122 nm, as demonstrated in Fig. 9.30 by the dotted curves.  Although Bottiger et al.
did not specify the magnitude of their experimental errors, the latter can perhaps be
inferred by comparing the experimental curves for the ratios 13 aa  and ,14 aa  which
must be the same for homogeneous spherical particles.  Despite some residual differ-
ences between the experimental data and the results of theoretical computations, the
numbers of major maxima and minima in the solid curves and their locations are re-
produced almost perfectly.  The dotted curves in the left- and right-hand panels of
Fig. 9.31 were computed for diameters 1108 and 1136 nm, respectively, and deviate
significantly from the experimental curves.  This demonstrates that the accuracy of
sizing the latex particle using measurements of the Stokes scattering matrix is better
than ±14 nm or 1.2%.

The final example illustrates the use of polarimetry for remotely retrieving cloud-
particle microphysics and represents what is perhaps the most spectacular achieve-
ment of planetary remote sensing.  Figures 9.32 and 9.33 show the results of ground-
based measurements of the linear polarization of sunlight reflected by Venus as a
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Figure 9.29.  Measurements and computations of the intensity (in arbitrary units) scattered by a
glycerol droplet at a scattering angle of approximately °90  versus droplet radius (after Chýlek
et al. 1992).
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function of scattering angle at wavelengths 0.55 and 0.99 µm, respectively.  The
curves depict the results of theoretical calculations based on a simple model of the
Venus atmosphere in the form of a homogeneous, optically semi-infinite, locally
plane-parallel cloud layer uniformly covering the entire planet (Hansen and Hovenier
1974).  The cloud particles were assumed to be spherical, and their single-scattering
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Figure 9.30.  Ratios of the elements of the normalized Stokes scattering matrix for a single
latex sphere.  The solid curves depict the laboratory data by Bottiger et al. (1980), whereas the
dotted curves show the results of Lorenz–Mie computations for the sphere diameter 1122 nm.
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Figure 9.31.  As in Fig. 9.30, but for diameters 1108 nm (left panel) and 1136 nm (right panel).
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Figure 9.32.  Observations of the polarization of sunlight reflected by Venus in the visual
wavelength region (symbols) and theoretical computations at µm55.0 wavelength (curves).
The theoretical results are based on a model of nonabsorbing spherical particles with fixed
relative refractive index (m = 1.44) and fixed effective variance of the size distribution

0.07)( eff =v  (curves).  The different curves show the influence of the effective radius effra ≡
on the polarization. (After Hansen and Hovenier 1974.)
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properties were modeled using the Lorenz–Mie theory.  The computations of multiple
scattering of light in the atmosphere were based on the so-called adding/doubling
procedure for the numerical solution of the vector radiative transfer equation (Ho-
venier 1971; Hansen and Travis 1974).  Hansen and Hovenier used the simple gamma
distribution (5.245) to represent analytically the distribution of cloud particles over
sizes and found the parameters )( effra =  and )( effv=b  of this distribution, as well
as the relative refractive index, by minimizing the differences between the observa-
tional data and the results of model computations.  From the comparisons between the
computed and observed quantities, Hansen and Hovenier deduced the following.

● The observations can indeed be reproduced quantitatively using a model of
nonabsorbing spherical particles.  The observational data at visible wave-
lengths contain a clear signature of the spherical particle shape, such as the
primary rainbow at Θ  ~ °160  and the anomalous diffraction feature at Θ  ~

°25  (cf. Fig. 9.32 and the lower left panel of Plate 9.4).  This interpretation is
confirmed by the spectral variation of the observed polarization.
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Figure 9.33.  Observations (symbols) and theoretical computations (curves) of the polarization
of the sunlight reflected by Venus at µm99.0  wavelength. The different theoretical curves are
for various relative refractive indices, the effective radius being selected in each case to yield
the closest agreement with the observations.  The effective variance of the cloud-particle size
distribution is fixed at 0.07.  (After Hansen and Hovenier 1974.)
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● The effective radius of the cloud particles is 1.05 ± 0.10 µm.
● The particle size distribution is narrow, with an effective variance 07.0eff =v

.02.0±
● The cloud-particle refractive index has a normal dispersion, decreasing from

1.46 ± 0.015 at a wavelength µm365.0  to 1.43 ± 0.015 at a wavelength 0.99
µm.

Based on the spectral dependence of the refractive index, Hansen and Hovenier con-
cluded that the cloud particles consist of a concentrated (76% by weight) aqueous
solution of sulfuric acid O).HSO(H 242 −   This remarkable result has been confirmed
by subsequent in situ measurements and observations from Venus-orbiting satellites
(e.g., Sato et al. 1996 and references therein).

Further reading

Scattering phenomena associated with homogeneous spherical particles are exten-
sively discussed in van de Hulst (1957), Nussenzveig (1992), Lynch and Livingston
(1995), and Grandy (2000).  An overview of scattering and absorption properties of
layered and radially inhomogeneous spherically symmetric particles can be found in
the books by Kerker (1969), Prishivalko et al. (1984), and Babenko et al. (2003).

 The use of laboratory measurements of scattering matrix elements for sizing
spherical particles is described by Maltsev et al. (1997) and Kaplan et al. (2000).  The
book edited by Gehrels (1974) contains many applications of polarimetry to particle
characterization in astrophysics and planetary remote sensing.  The use of polarimetry
in remote sensing of the terrestrial atmosphere is described by Brogniez et al. (1992),
Buriez et al. (1997), Mishchenko and Travis (1997), Deuzé et al. (2000), Masuda et
al. (2000), Sano and Mukai (2000), and Chowdhary et al. (2001).  Dubovik and King
(2000) and Lacis et al. (2000) discussed the retrieval of microphysical properties of
spherical aerosols using multi-wavelength measurements of extinction and sky radi-
ances.  The characterization of water-cloud droplets and spherical aerosol particles
using radiance measurements from space is reviewed by Nakajima and King (1990),
King et al. (1999), and Rossow and Schiffer (1999).
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Chapter 10

Scattering and absorption properties of
nonspherical particles

The convenient availability and simplicity of the Lorenz–Mie theory has resulted in a
widespread practice of treating nonspherical particles (especially those in random orien-
tation) as if they were spheres to which Lorenz–Mie results are applicable.  However, the
assumption of sphericity is rarely made after first having studied the effects of non-
sphericity and concluded that they are negligible but, rather, is usually based upon a per-
ceived lack of practical alternatives.  In fact, overwhelming evidence suggests that the
scattering properties of nonspherical particles, including those in random orientation, can
significantly differ from those of volume- or surface-equivalent spheres.  Hence, the goal
of this chapter is to provide a brief summary of recent research efforts aimed at a signifi-
cantly better understanding of the effects of particle shape and morphology on electro-
magnetic scattering.

10.1 Interference and resonance structure of scattering
patterns for nonspherical particles in a fixed
orientation; the effects of orientation and size
averaging

We have seen in Section 9.1 that scattering patterns for monodisperse spheres are heavily
burdened with various interference and resonance features.  The interference and reso-
nance structure for monodisperse nonspherical particles in a fixed orientation is even
more intricate because it acquires new complex, orientation-specific features.  This is
demonstrated in Figs. 10.1–10.3, which show the results of T-matrix computations of the
intensity scattered by three types of particle in various orientations (all “orientations” of a
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spherical particle yield, of course, the same scattering pattern).  The sphere (Fig. 10.1)
and also the spheroid and cylinder with rotation axes oriented along the z-axis of the
laboratory coordinate system (the upper left panels of Figs. 10.2 and 10.3, respectively)
show no azimuthal dependence of the scattered intensity, because the scattering geometry
is axially symmetric and the incident light is unpolarized.  However, the other panels of
Figs. 10.2 and 10.3 demonstrate patchy patterns similar to those shown in Plate 8.1.  The
number of patches and the complexity of the scattering patterns rapidly mount with
growing size parameter (Figs. 10.4 and 10.5), making it increasingly difficult to establish
a definitive relationship between the physical and geometrical particle characteristics on
the one hand and the structure of the scattering pattern on the other.

Panels (a)–(c) of Plate 10.1 represent another way of looking at the effects of non-
sphericity and orientation on scattering patterns.  They depict the degree of linear
polarization of the scattered light, for unpolarized incident light, versus the zenith
angle of the scattering direction and the surface-equivalent-sphere size parameter for
monodisperse spheres (a) and for monodisperse, surface-equivalent oblate spheroids
with two orientations of the rotation axis relative to the laboratory reference frame
(b), (c).  The polarization patterns for the spheres and the spheroids in the two fixed
orientations are dramatically different.  In particular, the lack of axial symmetry for
the light-scattering geometry in panel (c) results in non-zero polarization values at

°= 0scaϑ  and .180°
Plate 10.1(d) shows that the polarization pattern computed for monodisperse sphe-

roids in random orientation is much smoother and less complex than those for sphe-
roids in fixed orientations.  This smoothing effect of averaging over orientations is
reinforced by averaging over sizes, which totally removes the residual interference
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Figure 10.1.  Scattered intensity (in arbitrary units) versus scaϑ  and scaϕ  for a spherical parti-
cle illuminated by an unpolarized beam of light incident along the z-axis of the laboratory ref-
erence frame (cf. Fig. 1.2).  The size parameter of the sphere is 20 and the relative refractive
index is 1.53 + i0.008.
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and resonance structure still evident in Plate 10.1(d).  This is demonstrated by Plate
10.2(d), which shows the T-matrix results for a modified power law distribution of
surface-equivalent-sphere radii, given by Eq. (5.246) with 3−=α  and .1.0eff =v

The most obvious reason for performing computations and measurements of light
scattering by polydisperse rather than monodisperse particles is the desire to represent
more closely natural particle ensembles, in which particles are most often distributed
over a range of sizes and orientations.  The second reason is the presence of the com-
plicated and highly variable interference and resonance structure, which makes it
highly problematic to compare computation and/or measurement results for monodis-
perse particles in a fixed orientation in order to derive useful conclusions about the
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Figure 10.2.  Scattered intensity (in arbitrary units) versus scaϑ  and scaϕ  for a prolate sphe-
roid with an axis ratio 21=ba  illuminated by an unpolarized beam of light incident along the
z-axis of the laboratory reference frame.  The surface-equivalent-sphere size parameter of the
spheroid is 20 and the relative refractive index is 1.53 + i0.008.  The orientation of the spheroid
rotation axis relative to the laboratory coordinate system is specified by the Euler angles

,0°=α  °= 0β  (upper left panel), ,0°=α  °= 90β  (upper right panel), ,0°=α  °= 45β
(lower left panel), and ,45°=α °= 45β  (lower right panel).
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specific effects of particle shape on electromagnetic scattering.  Averaging over sizes
for spheres and averaging over orientations and sizes for nonspherical particles
largely removes the interference and resonance structure and enables meaningful
comparisons of the scattering properties of different types of particle.  Therefore, in
the following sections we will mostly analyze polydisperse ensembles of randomly
oriented nonspherical particles.

10.2 Randomly oriented, polydisperse spheroids with
moderate aspect ratios

There are two reasons to begin our survey by considering spheroidal particles.  First,
the shape of a spheroid has the advantage of being described by only one shape pa-
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Figure 10.3.  As in Fig.10.2, but for a prolate cylinder with a diameter-to-length ratio .21
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rameter, specifically, the axis ratio .ba  By varying this single parameter, one can
model a continuous sequence of shapes varying from perfect spheres )1( =ba  and
nearly spherical particles ba( ~1) to needles ba( � 1) and plates ba( � 1). Second,
spheroids are rotationally symmetric scatterers and, therefore, are especially suitable
for efficient T-matrix computations (cf. subsection 5.8.3).

The T-matrix code described in Section 5.11 provides the option of using several
types of size distribution function, given by Eqs. (5.242)–(5.246).  As discussed in
subsection 5.10.1, the maximum equivalent-sphere radius maxr  for the modified
gamma, log normal, and gamma size distributions must be increased until the scat-
tering results converge within a prescribed numerical accuracy.  This requirement
may often necessitate a rather large value of the maximum radius, which can result in
quite time-consuming T-matrix computations or even failure if the maximum radius is
so large relative to the wavelength that the T-matrix code does not converge (cf. sub-
section 5.11.7).  However, Hansen and Travis (1974) and Mishchenko and Travis
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Figure 10.4.  As in Fig.10.2, but for spheroid surface-equivalent-sphere size parameter 40.
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Table 10.1. Efficiency factors, single-scattering albedo, and asymmetry parameter for
log normal, gamma, and modified power law size distributions of randomly oriented
oblate spheroids with an axis ratio 6.1=ba a

Size distribution extQ scaQ absQ ϖ Θcos

Log normal 2.35 1.90 0.445 0.810 0.747
Gamma 2.35 1.90 0.445 0.811 0.746
Modified power law 2.37 1.93 0.442 0.813 0.747

aAll three distributions of surface-equivalent-sphere radii have the same effective
radius, ,m5.1eff =r and effective variance, .1.0eff =v The power exponent of the
modified power law size distribution is .3−=α The relative refractive index is 1.53
+ i0.008, and the wavelength of light in the surrounding medium is 0.6283 m.
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Figure 10.5.  As in Fig. 10.3, but for cylinder surface-equivalent-sphere size parameter 40.
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(1994c) showed that, in practice, many plausible size distributions of spherical and
nonspherical particles can be adequately represented by just two parameters, viz., the
effective radius and the effective variance, defined by Eqs. (5.248) and (5.249), re-
spectively.  This means that different size distributions that have the same values of

effr  and effv  can be expected to have similar dimensionless scattering and absorption
characteristics, as illustrated by Table 10.1 and Fig. 10.6.  In this regard, the power
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Figure 10.6.  Elements of the normalized Stokes scattering matrix for log normal, gamma, and
modified power law size distributions of randomly oriented oblate spheroids with an axis ratio

.6.1=ba   All three distributions of the surface-equivalent-sphere radii have the same effective
radius µm 5.1eff =r  and effective variance .1.0eff =v   The power exponent of the modified
power law size distribution is .3−=α   The relative refractive index is 1.53 + i0.008, and the
wavelength of light in the surrounding medium is µm.6283.0
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and modified power law size distributions given by Eqs. (5.244) and (5.246) have the
important practical advantage that their respective maximal radii 2max rr =  are finite
by definition and can be significantly smaller than the corresponding convergent radii
of the modified gamma, log normal, and gamma distributions with the same effr  and

effv  (Fig. 10.7).  Furthermore, the absence of a sharp cut-off at 1rr =  makes the
scattering patterns generated by the modified power law distribution significantly
smoother than those produced by the standard power law distribution.  Hence, the
majority of numerical results discussed in this and the following section have been
computed using the modified power law size distribution.  We used a fixed power
exponent value of 3−=α  and determined the formal parameters of the size distribu-
tion, 1r  and ,2r  from the system of equations (5.248), (5.249) for given values of the
effective radius and effective variance.  It is straightforward to show that for fixed α
and ,effv  eff11 rpr =  and ,eff22 rpr =  where  1p  and 2p  are constant proportionality
factors.  The numerical values of these factors for a selection of -effv values are listed
in Table 10.2.

Figures 10.8–10.11 show the phase function versus the scattering angle and the ef-
fective size parameter eff1eff rkx =  for polydisperse spheres and polydisperse, ran-
domly oriented, surface-equivalent spheroids with m = 1.53 + i0.008, while the right-
hand two columns of Plate 10.2 depict the ratio ρ  of the phase function for spheroids
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Figure 10.7.  Log normal, gamma, and modified power law size distributions with =effr
µm 5.1 and .1.0eff =v   The power exponent of the modified power law size distribution is

.3−=α
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to that for spheres.  Note that the relative refractive index 1.53 + i0.008 is typical of
dust-like and mineral terrestrial aerosols at visible wavelengths (d’Almeida et al.
1991).  The 121 scattering angle gridlines in Figs. 10.8–10.11 are drawn at °5.1  in-
tervals and correspond to scattering angles ,5.178...,,5.1,0 °°°=Θ  and ,180°  while
the 101 size parameter gridlines are drawn at 0.3 intervals and correspond to size pa-
rameters effx = 0, 0.3, …, 29.7, and 30.  The residual small-amplitude ripple in Fig.
10.8 is caused by the cut-off at 2rr =  in Eq. (5.246) and is almost completely eliminated
by averaging over spheroid orientations (Figs. 10.9–10.11).

It can be seen clearly that, excluding the region of Rayleigh scattering, five dis-
tinct -ρ value regions exist.  In order of increasing scattering angle for both prolate
and oblate spheroids they are:

Table 10.2. Factors 1p and ,2p for the modified power
law distribution defined by Eq. (5.246) with ,3−=α as
functions of effv

effv 1p 2p

0.1 0.89031 1.56538
0.2 0.61383 1.94912
0.4 0.37433 2.52160
1 0.11958 3.91046

Spheres

Figure 10.8.  Phase function )(1 Θa  versus scattering angle and effective size parameter for the
modified power law distribution of spheres with 3−=α  and .1.0eff =v   The relative refractive
index is 1.53 + i0.008.
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(1)  nonsphere ≈ sphere, i.e., ;1≈ρ (2)  nonsphere > sphere, i.e., ;1>ρ
(3)  nonsphere < sphere, i.e., ;1<ρ (4)  nonsphere � sphere, i.e., ρ  � 1;  (10.1)
(5)  nonsphere � sphere i.e., ρ  � 1.

Prolate, a / b = 1  1.4

Oblate, a / b = 1.4

/

Figure 10.9.  As in Fig. 10.8, but for surface-equivalent, randomly oriented prolate and oblate
spheroids with aspect ratio 1.4.
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The first of these regions is the region of nearly direct forward scattering.  It is the
region least sensitive to particle nonsphericity, because of the dominance of the dif-
fraction contribution to the phase function; the latter is determined by the average
area of the particle geometrical cross section (Section 7.4), which is the same for

Prolate, a / b = 1  1.7

Oblate, a / b = 1.7

/

Figure 10.10.  As in Fig. 10.8, but for surface-equivalent, randomly oriented prolate and oblate
spheroids with aspect ratio 1.7.
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surface-equivalent convex particles such as spheres and spheroids (Vouk 1948).   The
second region, ,1>ρ  extends from about °5  to °30  and becomes more pronounced
with increasing spheroid aspect ratio ε  (i.e., the ratio of the larger to the smaller
spheroid axes). Depending on aspect ratio, region 3, ,1<ρ  extends from about −°30

Prolate, a / b = 1  2

Oblate, a / b = 2

/

Figure 10.11.  As in Fig. 10.8, but for surface-equivalent, randomly oriented prolate and oblate
spheroids with aspect ratio 2.
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°35 to °−° 11080  and becomes narrower with increasing .ε  In this region nonspheri-
cal–spherical differences are greater for oblate than for prolate spheroids with the
same value of ;ε  the differences increase with increasing .ε

Region 4 extends from about °−° 11080  to °−° 160150  and is wider for particles
with larger aspect ratios.  In this region ρ  can well exceed 4, indicating strongly en-
hanced side scattering as opposed to the deep and wide side-scattering minimum that
is found for spherical particles (cf. Figs. 10.8–10.11).  Both the left-hand boundary of
this region and the position of maximum -ρ values shift towards smaller scattering
angles with increasing .ε  Interestingly, for prolate spheroids the maximum -ρ values
are greater for the moderate aspect ratio 1.4 than for the larger aspect ratios 1.7 and 2.

In region 5, ρ  can fall to values below 0.25, which means that another major ef-
fect of nonsphericity is to suppress the strong rainbow and glory features seen in cal-
culations for surface-equivalent spheres (cf. Fig. 10.8).  However, the backscattering
enhancement traditionally associated with the glory survives as a rise of the back-
scattered intensity at °180  relative to that at .170°   Furthermore, as evident from
Figs. 10.8 and 10.9, oblate spheroids with aspect ratio 1.4 can have even greater
phase-function values at °=180Θ  than surface-equivalent spheres, thereby producing

-ρ values exceeding unity and causing an exception to the region-5 criterion ρ � 1.
The top two panels of Fig. 10.12 also show that for most size parameters oblate sphe-
roids have larger backscattering phase function values than prolate spheroids with the
same aspect ratio and that the ratio of the nonspherical to spherical phase functions at

°=180Θ  has a distinct minimum at effective-size-parameter values 6–9. Also worth
noting is that, for prolate spheroids, region 5 becomes more pronounced with in-
creasing ε  whereas for oblate spheroids ρ  can be smaller for ε  = 1.7 than for ε  =
2, at larger effective-size-parameter values.

A comparison of the polydisperse polarization diagrams for randomly oriented
spheroids and for spheres (cf. the two columns on the left of Plate 10.2 and the top
middle panel of Plate 10.6) reveals that, at scattering angles larger than ,60°  the de-
gree of linear polarization for unpolarized incident light, ,11 ab−  is strongly

-ε dependent, the spherical–nonspherical differences becoming more pronounced
with increasing ;ε  this indicates that the Lorenz–Mie theory is an inappropriate ap-
proximation for nonspherical particles in that region.  However, at scattering angles
less than °60  the linear polarization is weakly dependent on particle shape, thereby
suggesting that polarization measurements at near-forward-scattering angles coupled
with Lorenz–Mie computations are potentially useful for sizing nonspherical parti-
cles.  In general, the polarization generated by spheroids is more neutral than that for
spheres and shows less variability with size parameter and scattering angle.  It is in-
teresting, however, that the Rayleigh region extends to larger size parameters with
increasing aspect ratio.  The most prominent polarization feature for spheroids is the
bridge of positive polarization near ,120°  which extends from the region of Rayleigh
scattering and separates two regions of negative or neutral polarization at small and
large scattering angles.  This bridge is absent for spherical particles and near-spherical
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spheroids, but develops fully for spheroids with -ε values greater than 1.6–1.7, being
somewhat more pronounced for oblate than for prolate spheroids with the same ε
(Mishchenko and Travis 1994b).

Whereas for spherical particles ,1)()( 12 ≡ΘΘ aa  the two left-hand columns of
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Figure 10.12.  Top two panels: ratio of the phase function at °=180Θ  for randomly oriented
polydisperse spheroids with aspect ratios of 1.4 and 2 to that for surface-equivalent spheres,
versus effective size parameter.  Middle two panels: as in the top panels, but for the ratio of the
respective backscattering efficiency factors.  Bottom two panels: as in the top panels, but for
the ratio of the respective Rbe-values.  Curves are shown for prolate and for oblate spheroids.
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Plate 10.3 demonstrate that for spheroids this ratio can significantly deviate from
unity, especially at side- and backscattering angles.  The angular dependence of

12 aa is quite different for prolate and oblate spheroids with the same -ε value,
thereby making this ratio well suited for discriminating between elongated and flat-
tened particles.  For prolate spheroids, 12 aa  has a pronounced minimum centered at

°−° 145120  which shifts towards smaller scattering angles as ε  increases.  Another
minimum occurs at backscattering angles and, surprisingly, is deeper for the less as-
pherical spheroids, with ε  = 1.4, than for the spheroids with ε  = 1.7 and 2.  Oblate
spheroids exhibit a shallow minimum at around ,170150 °−°  which becomes more
pronounced for particles with ε  = 2, and another minimum at exactly the backscat-
tering direction, ,180°=Θ  which exhibits a complicated dependence on .ε  Also,
oblate spheroids with ε  = 1.4 show a shallow minimum at about ,110100 °−°  which
disappears with increasing .ε  For both prolate and oblate spheroids, the ratio 12 aa
at scattering angles less than °70  and in the region of Rayleigh scattering is close to
unity and is essentially insensitive to particle size and shape.

For spherical particles the ratio )()( 13 ΘΘ aa  is identically equal to the ratio
;)()( 14 ΘΘ aa  these are shown in the top middle and right-hand panels of Plate 10.5.

For spheroids, these two ratios can substantially differ from each other, the ratio
14 aa  being larger than 13 aa  for most effective size parameters and scattering an-

gles (cf. the two right-hand columns of Plate 10.3 and the two left-hand columns of
Plate 10.4).  For spheres, the ratio ,13 aa  and thus 14 aa  also, has two negative re-
gions at side- and backscattering angles, separated by a narrow positive branch.  With
increasing ,ε  the side-scattering negative region shifts towards smaller scattering
angles, weakens in magnitude, and ultimately disappears, while the backscattering
negative region becomes wider, especially for prolate spheroids.  The backscattering
region of negative 13 aa  values is wider and deeper than that for .14 aa  Unlike the
ratio ,13 aa  the ratio 14 aa  can become positive at backscattering angles.  Both

13 aa  and 14 aa  are rather strongly size- and -ε dependent and thus can be sensitive
indicators of particle size and shape.  In particular, the regions of negative 13 aa  and

14 aa are wider and deeper for prolate than for oblate spheroids with the same
-ε value.  The size-parameter dependence of the ratio 14 aa  at backscattering angles

is also rather different for prolate and oblate spheroids with the same -ε value.
The right-hand top panel of Plate 10.6 and the two right-hand columns of Plate

10.4 show that the general pattern of the sign of the ratio )()( 12 ΘΘ ab  is the same for
spheres and spheroids, with a broad side-scattering region of negative values separat-
ing two positive branches at small and large scattering angles.  The forward-scattering
region is especially aspect-ratio independent, which renders possible the use of the
Lorenz–Mie theory at small scattering angles for sizing nonspherical particles.  How-
ever, large variations in magnitude of the ratio 12 ab  with particle shape at side- and
backscattering angles make it sensitive to particle nonsphericity and appreciably dif-
ferent for prolate and oblate spheroids of the same aspect ratio.  In particular, with
increasing ε  the region of smallest 12 ab values becomes more shallow and shifts
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towards smaller scattering angles, while the backscattering positive branch becomes
less developed.  The region of negative values is more shallow and the backscattering
positive branch is much weaker for prolate than for oblate spheroids.  In general, the
differences between prolate spheroids and spheres are larger than those between ob-
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Figure 10.13.  Top two panels: ratio of the extinction cross section for randomly oriented poly-
disperse spheroids with aspect ratios of 1.4 and 2 to that for surface-equivalent spheres, versus
effective size parameter.  Middle two panels: as in the top panels, but for the ratio of the re-
spective scattering cross sections.  Bottom two panels: as in the top panels, but for the ratio of
the respective absorption cross sections.  Curves are shown for prolate and for oblate spheroids.
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late spheroids and spheres.
Unlike the elements of the scattering matrix, the integral photometric characteristics

(the extinction, scattering, and absorption cross sections, the single-scattering albedo, and
the asymmetry parameter) are much less dependent on particle shape, as Figs. 10.13 and
10.14 demonstrate.  In most cases the nonspherical–spherical differences tend to decrease
with increasing effective size parameter.  For the optical cross sections and the single-
scattering albedo, the differences are maximal at effective size parameters smaller than 5.
The asymptotic geometrical optics limit, unity, for the extinction cross section ratio (cf.
Section 7.4) is reached at relatively small size parameters of about 15.  The nonspheri-
cal–spherical differences are especially small for the single-scattering albedo at size pa-
rameters exceeding unity.  The curves for prolate and oblate spheroids with the same
aspect ratio are very close to one another except for the asymmetry parameter, in which
case the differences between the curves for prolate and oblate spheroids can be much
larger than the differences between those for prolate spheroids and for spheres.

As discussed in Section 9.5, important backscattering characteristics widely used
in radar and lidar applications are the backscattering efficiency factor ,bQ  defined by
Eqs. (9.10) and (9.14), and the backscatter-to-extinction ratio ,beR  defined by Eq.
(9.13).  The four lower diagrams of Fig. 10.12 depict the ratios of these backscattering
characteristics for randomly oriented polydisperse prolate and oblate spheroids to
those for surface-equivalent spheres.  Not surprisingly, these ratios differ from the
backscattering-phase-function ratio (see the top two diagrams of Fig. 10.12) only at
small size parameters, where the ratio of the scattering cross sections and the ratio of
the single-scattering albedos for nonspherical and surface-equivalent spherical parti-
cles deviate noticeably from unity.  It is seen that nonspherical–spherical differences
in the backscattering efficiency factor and the backscatter-to-extinction ratio are quite
significant, thus suggesting that shape effects should be explicitly taken into account
in analyzing backscattering measurements for nonspherical particles.  In general,
spheroids are weaker backscatterers than surface-equivalent spheres, especially at size
parameters from about 5 to 15.  However, as we noted above, the curves for oblate
spheroids with aspect ratio 1.4 illustrate that suppressed scattering at °=180Θ  is not
a universal optical characteristic of nonspherical particles.

Two quantities that are traditionally considered unequivocal indicators of particle
nonsphericity are the linear and circular backscattering depolarization ratios, Lδ and

,Cδ  defined as

,0
)180()180(
)180()180(

21

21
L ≥

°+°
°−°=

aa
aaδ  (10.2)

0
)180()180(
)180()180(

41

41
C ≥

°−°
°+°=

aa
aaδ  (10.3)

(see  Eqs. (4.55) and (4.56)).  For macroscopically isotropic and mirror-symmetric media
these ratios are not independent, because Eq. (4.63) yields
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Figure 10.14.  Top two panels: ratio of the single-scattering albedo for randomly oriented
polydisperse spheroids with aspect ratios of 1.4 and 2 to that for surface-equivalent spheres,
versus effective size parameter.  Middle two panels: as in the top panels, but for the ratio of the
respective asymmetry parameters.  Bottom two panels: linear backscattering depolarization
ratio for randomly oriented polydisperse spheroids with aspect ratios of 1.4 and 2 versus effec-
tive size parameter.  Curves are shown for prolate and for oblate spheroids.
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(Mishchenko and Hovenier 1995).  For spheres, both ratios vanish since )180(2 °a
)180(1 °= a  and )180()180( 14 °−=° aa  (see Eqs. (4.65) and (4.66)).  For nonspherical

particles these equalities do not generally hold, thus causing non-zero backscattering
depolarization ratios.  The bottom two diagrams in Fig. 10.14 show the linear depo-
larization ratio computed for randomly oriented polydisperse spheroids.  It is seen that
for both prolate and oblate spheroids Lδ  can deviate substantially from zero, thus
illustrating its use as an indicator of nonsphericity.  However, the depolarization ratios
cannot be considered an unambiguous measure of the degree of the departure of the
particle shape from that of a sphere.  Indeed, for prolate spheroids with ε  = 1.4 the
maximal -Lδ value is significantly larger than that for ε  = 2.  We will see later that
even larger -Lδ values can be produced by spheroids with aspect ratios as small as
1.05.
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Figure 10.15.  Phase function 1a  versus scattering angle Θ  for polydisperse, randomly ori-
ented oblate spheroids with an axis ratio 1.7 and for surface-equivalent spheres.  The results are
shown for two values of the real part of the relative refractive index 31.1( R =m  and 1.53) and
three values of the imaginary part I(m = 0, 0.05, and 0.5).  The size distribution is given by Eq.
(5.246) with 3−=α  and .1.0eff =v   The effective size parameter is .15eff =x   The vertical
axis scale applies to the curves with ,5.0I =m  the other curves being successively displaced
upward by a factor of 100. 
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Figures 10.15 and 10.16 show that with increasing imaginary part of the relative
refractive index, nonspherical–spherical differences weaken and ultimately disappear
(Mishchenko and Travis 1994b; Mishchenko et al. 1997a).  For these particle distri-
butions with effective size parameter of ,15eff =x  the scattering patterns with

5.0I =m  are dominated by diffraction and external reflections and are essentially the
same for spheres and surface-equivalent randomly oriented spheroids.  This example
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illustrates the general theorem formulated by van de Hulst (1957, Section 8.42): the
scattering pattern caused by external reflection from very large convex particles with
random orientation is identical to that caused by external reflection from a very large
sphere composed of the same material.

10.3 Randomly oriented, polydisperse circular cylinders
with moderate aspect ratios

Another class of rotationally symmetric nonspherical particles that can be efficiently
studied using the T-matrix method are finite circular cylinders.  Unlike spheroids, the
surface of finite cylinders is not completely smooth but, rather, is characterized by
sharp, rectangular edges. These edges make cylinders less regular nonspherical parti-
cles than spheroids and might well be expected to have an effect on the scattering and
absorption characteristics (Kuik et al. 1994; Mishchenko et al. 1996a).

For spheroids, nonspherical–spherical differences in all scattering and absorption
characteristics vanish as the axis ratio becomes unity, since spheroids with axis ratio
unity are spherical particles.  Circular cylinders with diameter-to-length ratio unity
are, however, already nonspherical particles with a shape deviating significantly from
that of a sphere (the ratio of the largest to the smallest cylinder dimension equals

).414.12 2/1 ≈  Accordingly, Figs. 10.17–10.21 show that nonspherical–spherical dif-
ferences in the extinction, scattering, and absorption cross sections, the single-
scattering albedo, and the asymmetry parameter between cylinders with 1=LD  and
spheres are already significant. Furthermore, the differences in ,extC  ,scaC  and

�� Θcos  do not necessarily increase with increasing cylinder aspect ratio.  In fact, at
effective size parameters larger than approximately 7, nonspherical–spherical differ-
ences in the extinction and scattering cross sections and in the asymmetry parameter
are smaller for prolate cylinders with 21=LD  than for more compact cylinders
with ,1=LD ,4.11 and 1.4.  However, nonspherical–spherical differences in the
absorption cross section and single-scattering albedo do increase with increasing as-
pect ratio.  The absorption cross section systematically decreases with increasing ,ε
as is the case for spheroids, whereas ϖ  and �� Θcos  increase with increasing ε  at
effective size parameters larger than 3.  The maximum nonspherical–spherical differ-
ences in the integral photometric characteristics for cylinders occur at effective size
parameters smaller than about 5, which resembles the case for spheroids (cf. Section
10.2).  Similarly, at effective size parameters larger than about 10 the differences in
the integral photometric characteristics become relatively small.  However, the mag-
nitude of the nonspherical–spherical differences for cylinders can be noticeably larger
than that for axis-ratio-equivalent spheroids.

The backscattered fraction for isotropically incident radiation, ,β  is defined as



Scattering, Absorption, and Emission of Light by Small Particles300

ΘΘΘΘ
π

β
π

sin)(d
2
1

1

  

0  
a=  (10.5)

(Coakley and Chýlek 1975; Wiscombe and Grams 1976).  This quantity enters the
two-stream approximation to the scalar radiative transfer equation for plane-parallel
media and is sometimes used to estimate experimentally the asymmetry parameter of
the phase function (Marshall et al. 1995). Figure 10.22 shows the ratio

(spheres)cylinders)( ββ  as a function of effx  and reveals that nonspherical–spheri-
cal differences in the backscattered fraction are relatively small.  Interestingly, the
asymmetry parameter and the backscattered fraction ratios depicted in Figs. 10.21 and
10.22 are approximately mirror images of one another with respect to the horizontal
line at the level unity, so that for each size parameter, the larger the asymmetry pa-
rameter ratio the smaller the backscattered fraction ratio.  This relationship was first
found by Mugnai and Wiscombe (1986) in their T-matrix computations for randomly
oriented Chebyshev particles and then by Mishchenko et al. (1997a) in computations
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Figure 10.17.  Ratio of the extinction cross section for randomly oriented, polydisperse cylin-
ders to that for surface-equivalent spheres, versus effective size parameter; LD  = 1, ,4.11
1.4, ,21  and 2.  The distribution of surface-equivalent-sphere radii is given by Eq. (5.246)
with 3−=α  and .1.0eff =v  The relative refractive index is 1.53 + i0.008.
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for polydisperse, randomly oriented spheroids.
Plate 10.5 (left-hand column, three lower diagrams) shows that the pattern of the

ratio ρ  of the phase function for polydisperse, randomly oriented cylinders to that for
surface-equivalent spheres, as a function of effective size parameter and scattering
angle, strikingly resembles that for spheroids and spheres and shows, for size pa-
rameters � 5, the same five distinct -ρ regions in order of increasing scattering angle
(see Eq. (10.1)).  The only significant difference between the -ρ patterns for sphe-
roids and cylinders is the noticeably weak dependence of the -ρ pattern for cylinders
on the aspect ratio.  This means that for cylinders the boundaries of the five regions
remain essentially fixed as the diameter-to-length ratio varies; for spheroids, however,
the boundaries move substantially with axis ratio.

Region 1, where ,1≈ρ  is the region of exact or nearly exact forward scattering,
dominated by diffraction.  Region 2, where ,1>ρ  is the region of near-forward scat-
tering and becomes more pronounced with increasing asphericity for both prolate and
oblate cylinders, thus resembling the case for spheroids.  The third region, where

,1<ρ  extends from about °20  to about °70  and is more pronounced for oblate than
for prolate cylinders, again in agreement with computations for prolate versus oblate
spheroids.  Region 4 is the region of side scattering and extends from about °75  to
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Figure 10.18.  As in Fig. 10.17, but for the scattering cross section ratio.
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about .155°   Here ρ  can exceed 2.5.  Although this value is smaller than that for
surface-equivalent spheroids, for which ρ  can exceed 4, it nonetheless indicates a
strongly enhanced side-scattering, as opposed to the wide and deep side-scattering
minimum in the phase function for spherical particles (cf. Fig. 10.23).  Finally, region
5 is the region of near-backward scattering, where -ρ values as small as 0.3 demon-
strate again how nonsphericity can suppress the glory and rainbow features prominent
in the phase function for spherical particles.  Computations indicate, however, that
cylinders with effective size parameters larger than 16 can have larger phase function
values at exactly the backscattering direction than surface-equivalent spheres.  This is
illustrated well in Fig. 10.24, which shows the ratio of the phase function at °=180Θ
for cylinders to that for surface-equivalent spheres.  The only exception among these
cases is that of oblate cylinders with a diameter-to-length ratio 2.  Since this enhanced
scattering at °=180Θ  for cylinders occurs at relatively larger size parameters, it
might be explained using geometrical optics considerations, specifically, in terms of
double internal reflections from mutually perpendicular facets (see Section 10.6). We
should recall, however, that oblate spheroids with aspect ratios less than about 1.4 and
effective size parameters larger than about 12 can also produce greater backscattering
phase-function values than surface-equivalent spheres (cf. Plate 10.2(h)).
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Figure 10.19.  As in Fig. 10.17, but for the absorption cross section ratio.
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Figure 10.25 demonstrates that the backscatter-to-extinction ratio is also strongly
shape dependent, so that the ratio (spheres))(cylinders bebe RR  can be either much
larger or much smaller than unity.  Again, these results as well as those for spheroids
strongly suggest that the effect of particle shape should be taken into account explic-
itly in analyzing radar and lidar measurements for nonspherical particles.  As was
pointed out in Chapter 8, laboratory measurements of light scattering at exactly the
backscattering direction can be rather difficult, thereby enhancing the value of rigor-
ous theoretical computations of nonspherical–spherical differences.

For spheroids with ,1=ε  i.e., for spheres, the ratio 12 aa  is identically equal to
unity.  Cylinders with 1=LD  are already nonspherical particles and show a signifi-
cant deviation of 12 aa  from unity (Plate 10.6, left-hand column).  For the cylinders
with ,4.11 ,21=LD 1, 1.4, and 2 the patterns of the ratio 12 aa  as a function of
effective size parameter and scattering angle are qualitatively similar, showing side-
and back-scattering minima separated by a vertical bridge of larger values centered at
around .170°   However, the depths of the minima depend on .LD   The side-
scattering minimum is deeper for compact )1( =LD  and prolate )1( <LD  cylin-
ders, whereas the depth of the back-scattering minimum increases with increasing
aspect ratio.  The ratio 12 aa  for spheroids also shows a distinct backscattering
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Figure 10.20.  As in Fig. 10.17, but for the single-scattering albedo ratio.
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minimum.  However, unlike the case for cylinders, this minimum becomes signifi-
cantly deeper as the -ε value for prolate spheroids decreases from 2 to 1.4.  As for
spheroids, the ratio 12 aa  for cylinders is nearly shape independent and close to unity
at scattering angles smaller than °90  and/or at effective size parameters smaller than
2.  In general, cylinders show less variability of this ratio with shape than surface-
equivalent spheroids.

Plate 10.5 shows that the narrow positive branch separating the side- and back-
scattering negative regions in the ratios 13 aa  and 14 aa  for spheres is already ab-
sent for the least aspherical cylinders, with ,1=LD  and that the shape dependence of
both ratios for cylinders is rather weak.  As for the case of spheroids, the region of
negative 13 aa  values is wider and deeper than that for .14 aa  For most scattering
angles and size parameters 14 aa  is larger than .13 aa  Also, unlike the ratio ,13 aa
the ratio 14 aa  can be positive at backscattering angles.  However, the shape depend-
ence of the backscattering region of positive 14 aa  values may represent a noticeable
difference between cylinders and spheroids.  Specifically, for cylinders this region
becomes more pronounced with increasing ,ε  whereas for prolate spheroids it can
become significantly weaker.

As discussed in the preceding section, the most remarkable feature of the linear
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Figure 10.21.  As in Fig. 10.17, but for the asymmetry parameter ratio.
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polarization for polydisperse, randomly oriented spheroids is a bridge of positive po-
larization at scattering angles near °120  extending upwards from the region of Ray-
leigh scattering.  This bridge was observed by Perry et al. (1978) in laboratory meas-
urements of light scattering by narrow size distributions of nearly cubical NaCl parti-
cles with mean size parameters ranging from 3.1 to 19.9.  Positive polarization at
side-scattering angles was also found in laboratory measurements by Sassen and Liou
(1979) for platelike ice crystals and in measurements by Kuik (1992) for irregular
quartz grains (see also Section 10.7).  Plate 10.6 (middle column) shows that ran-
domly oriented polydisperse cylinders do not produce as pronounced a bridge of
positive polarization as that found for spheroids.  Instead, prolate and oblate cylinders
with 21=LD  and 2 produce what can be called a bridge of neutral polarization at
about the same scattering angles, whereas the axis-ratio-equivalent spheroids produce
a bridge of weak but distinctly positive polarization (Plates 10.2(e), (f)).  As for sphe-
roids, one of the effects of increasing aspect ratio for cylinders is to make the overall
polarization pattern more neutral and featureless.  Another common effect of in-
creasing asphericity is to extend the region of Rayleigh polarization to larger size pa-
rameters (Section 10.4).

As we have seen previously, the general pattern of the sign of the ratio 12 ab  is
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Figure 10.22.  As in Fig. 10.17, but for the backscattered fraction ratio.
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the same for spheres and spheroids, with a broad side-scattering region of negative
values separating two positive branches at small and large scattering angles.  Plate
10.6 (right-hand column) suggests that this general pattern is also typical of polydis-
perse, randomly oriented cylinders.  However, cylinders show less variability of the
ratio 12 ab  with particle shape than spheroids.  The forward-scattering region seems
to be especially shape independent, thus rendering possible the use of the Lorenz–Mie
theory at small scattering angles for sizing nonspherical particles.  This conclusion is
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in full agreement with the above-mentioned laboratory measurements by Perry et al.
(1978) for wavelength-sized salt particles.

Figures 10.26 and 10.27 show linear and circular backscattering depolarization
ratios computed for randomly oriented polydisperse cylinders.  As was the case for
spheroids, both ratios for cylinders deviate substantially from zero, thus illustrating
their usefulness as indicators of nonsphericity.  Similarly, large and even maximal
depolarization values can be reached at size parameters smaller than 6, i.e., for parti-
cles with equivalent-sphere radii smaller than the wavelength of the incident light.

10.4 Randomly oriented spheroids and circular cylinders
with extreme aspect ratios

It turns out that wavelength-sized spheroids and cylinders with extreme aspect ratios
may have scattering properties dramatically different from those of moderately as-
pherical particles.  We begin by discussing the results of T-matrix calculations for the
following five particle shapes: spheres, prolate spheroids with axis ratios 21=ba
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and ,201  and oblate spheroids with 2=ba  and 20 (Zakharova and Mishchenko
2000).  The size of a spheroid is specified in terms of the surface-equivalent-sphere
radius .sr  To suppress the interference structure in light-scattering patterns for
spheres and randomly oriented spheroids with 21=ba  and 2, the computation re-
sults are averaged over a narrow gamma distribution of equivalent-sphere radii, given
by Eq. (5.245) with an effective variance of .05.0eff =v   Size averaging is unneces-
sary for needlelike and platelike spheroids with 201=ba  and 20, respectively, since
their scattering patterns are sufficiently smoothed out by orientation averaging.  Table
10.3 lists the surface-equivalent-sphere size parameters 1ss 2 λπrx = for monodis-
perse spheroids with 201=ba  and 20 and the effective surface-equivalent-sphere
size parameters 1effs,effs, 2 λπrx =  for spheres and polydisperse spheroids with

21=ba  and 2 used in the computations.  The maximum values of sx  for spheroids
with ba = 201  and 20 were limited by the growing numerical instability of the T-
matrix computations (subsections 5.8.4 and 5.11.7).  For comparison, Table 10.3 also
lists the corresponding values of the volume-equivalent-sphere size parameters

1vv 2 λπrx =  and ,2 1effv,effv, λπrx =  as well as the respective size parameters along
the horizontal and vertical spheroid axes ,2 1λπaxa =  ,2 1effeff, λπaxa =
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,2 1λπbxb =  and .2 1effeff, λπbxb =  The relative refractive index is fixed at 1.311,
which is a value typical of water ice in air at visible wavelengths (Warren 1984).

Figure 10.28 shows the extinction efficiency factor ,extext ����= GCQ  the asym-
metry parameter ,cos �� Θ  and the efficiency factor for radiation pressure prQ

],cos1[ext ��−= ΘQ  where �� extC  is the ensemble-averaged scattering cross section
per particle and ��G  is the average area of the particle geometric projection.  Because
the imaginary part of the relative refractive index is set to be zero, the scattering effi-
ciency factor is equal to ,extQ  the absorption efficiency factor is equal to zero, and the
single-scattering albedo is equal to unity.  Figures 10.29 and 10.30 depict the ele-
ments of the normalized Stokes scattering matrix versus scattering angle.

Figures 10.29 and 10.30 show that needlelike and platelike particles with moder-
ate equivalent-sphere size parameters possess unique scattering properties. While
their phase functions are similar to those of surface-equivalent spheres and compact
spheroids and have a pronounced forward-scattering lobe, all other elements of the
scattering matrix closely resemble those of particles much smaller than the wave-
length (Rayleigh scatterers).  In particular, all linear polarization curves )( 11 ab−  for
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the spheroids with axis ratios 201  (first row) and 20 (fifth row) have a characteristic
bell-like shape, with a maximum reaching nearly 100% at scattering angles close to

;90°  12 aa  is very close to unity; and the elements 3a  and 4a  are nearly equal to
each other.  The fact that )()( 12 ππ aa ≈  and )()( 14 ππ aa −≈  yields linear and circular
depolarization ratios (as defined by Eqs. (10.2) and (10.3)) close to zero, whereas
wavelength-sized spheroids with axis ratios 21  and 2 give rise to significant back-
scattering depolarization. This demonstrates once again that the magnitude of the de-
polarization ratios is not a universal indicator of the degree of particle asphericity.
The extinction and radiation-pressure efficiency factors for highly aspherical sphe-
roids are significantly smaller than those for spheres and compact spheroids having
the same average projected area, whereas the values of the asymmetry parameter are
rather similar.  This is yet another indication that the particular scattering properties of
platelike and needlelike spheroids with moderate size parameters can resemble either
those of Rayleigh particles or those of surface-equivalent spheres.

The linear polarization curves for spheres show that the regime of Rayleigh
scattering breaks down at size parameters close to unity.  According to Table 10.3, the

0 5 10 15 20 25
0

0.5

1

1.5

2

Size parameter

C
ir

cu
la

r 
ba

ck
sc

at
te

ri
ng

 d
ep

ol
ar

iz
at

io
n 

ra
tio

D/L = 1

D/L = 1/1.4

D/L = 1.4

D/L = 1/2

D/L = 2
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size parameter along the shorter axis of the spheroids with axis ratios 201  and 20 is
smaller than unity even for the largest -sx values considered.  Therefore, these T-
matrix results may be indicating that the asymmetry parameter and the phase function
are mostly determined by the value of the size parameter of the sphere having the
same projected area, whereas all other elements of the scattering matrix and the opti-
cal cross sections are more sensitive to the value of the size parameter along the
smallest particle dimension.  It is interesting to note in this regard that West (1991)
found similar features in light scattering by low-density aggregates of spheres with
outer diameters comparable to the wavelength and monomer sizes much smaller than
the wavelength. He concluded that the forward-scattering lobe of the phase function
was diagnostic of the mean projected area of the entire cluster, whereas the angular
dependence of the linear polarization depended largely on the monomer radius.

Table 10.3. Surface-equivalent-sphere size parameters sx (or effs,x ), volume-
equivalent-sphere size parameters vx (or effv,x ), and size parameters ax (or eff,ax )

along the horizontal spheroid axes and bx (or eff,bx ) along the vertical spheroid axes,
as used in the T-matrix computations

201=ba sx vx ax bx

1 0.6845 0.2522 5.0432
2 1.3690 0.5043 10.087
3.5 2.3957 0.8826 17.651

21=ba effs,x effv,x eff,ax eff,bx

1 0.9637 0.7649 1.5298
2 1.9274 1.5298 3.0596
3.5 3.3730 2.6771 5.3543

12 11.565 9.1788 18.358

2=ba effs,x effv,x eff,ax eff,bx

1 0.9554 1.2038 0.6019
2 1.9109 2.4076 1.2038
3.5 3.3441 4.2132 2.1066

12 11.465 14.445 7.2227

20=ba sx vx ax bx

1 0.5186 1.4077 0.0704
2 1.0372 2.8155 0.1408
3.5 1.8151 4.9271 0.2464

12 6.2233 16.893 0.8446
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Since spheroids are particles with smooth surfaces, it is instructive to verify
whether sharp-edged wavelength-sized cylinders with extreme aspect ratios possess
similar scattering properties.  The computation of light scattering by prolate ice cylin-
ders with very large length-to-diameter ratios DL  turns out to be problematic even
with the extended-precision T-matrix code, because of poor convergence.  However,
Zakharova and Mishchenko (2001) managed to perform computations for randomly
oriented oblate ice cylinders with surface-equivalent-sphere size parameters up to 12
and diameter-to-length ratios LD  as large as 20.  The results of their computations
for cylinders with 1=LD  and 20 and surface-equivalent spheres are summarized in
Figs. 10.31–10.33.  As in previous computations, the interference structure is sup-
pressed by averaging the results for spheres and cylinders with 1=LD  over a nar-
row gamma distribution of surface-equivalent-sphere radii with effective variance

.05.0eff =v  The curves for monodisperse cylinders with 20=LD  are sufficiently
smooth already and do not require averaging over sizes.  Accordingly, the size of the
cylinders with LD = 20 is specified in Figs. 10.31–10.33 in terms of the monodis-
perse surface-equivalent-sphere size parameter ,sx  whereas the size of polydisperse
spheres and cylinders with 1=LD  is specified in terms of the effective surface-
equivalent-sphere size parameter .effs,x  The relative refractive index is fixed at 1.311.

Examination of Figs. 10.31–10.33 shows that, despite their sharp-edged shapes,
wavelength-sized circular ice disks with extreme aspect ratios possess the same scat-
tering properties as smooth platelike spheroids.  Specifically, their phase functions are
similar to those of surface-equivalent spheres and nonspherical particles (spheroids
and cylinders) with moderate aspect ratios and have a forward-scattering lobe whose
magnitude rapidly increases with size parameter.  In contrast, all other elements of the
scattering matrix closely resemble those of the Rayleigh scattering matrix as long as
the size parameter along the smallest cylinder dimension is less than unity.  Specifi-
cally, all curves of linear polarization )( 11 ab−  for plates with LD = 20 have the
renowned bell-like shape with a maximum approaching 100% at side-scattering an-
gles. Unlike the case for the compact particles, the scattering angle of maximal posi-
tive polarization decreases rather than increases with increasing size parameter.  The
ratio 12 aa  is close to unity, the elements 3a  and 4a  are almost the same and do not
vary significantly with size parameter, and the ratio 12 ab  is close to zero at most
scattering angles.  This behavior differs substantially from that exhibited by surface-
equivalent spheres and compact nonspherical particles.

These T-matrix results are in excellent agreement with the results of recent labo-
ratory measurements of electromagnetic scattering by randomly oriented plates with
very large diameter-to-thickness ratios and thicknesses smaller than the wavelength
(Waldemarsson and Gustafson 2000). Indeed, these microwave analog data (Fig. 8.4)
also show phase functions characteristic of compact wavelength-sized particles and
polarization curves typical of Rayleigh scattering.  In particular, the observed maxi-
mal polarization values approach 100% and occur at scattering angles less than .90°
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As discussed by Zakharova and Mishchenko (2000), the unusual scattering prop-
erties of wavelength-sized nonspherical particles with extreme aspect ratios should be
given adequate consideration in analyses of laboratory and remote sensing measure-
ments of light scattering.  For example, small measured values of depolarization
should not be identified automatically with Rayleigh scattering or a spherical particle
shape.  Similarly, measurements of Rayleigh-like polarization (e.g. Tozer and Beeson
1974; Witt et al. 1976; Tomasko et al. 1978; West and Smith 1991) should not be
attributed necessarily to particles much smaller than a wavelength.

The simplicity of the normalized Stokes scattering matrix for needlelike and
platelike particles with moderate size parameters allows for a convenient analytical
parameterization similar to those developed by West et al. (1983) and Braak et al.
(2001).  Such parameterizations can be useful in first-order analyses of remote sens-
ing observations when the plausible range of particle microphysical characteristics is
unknown and is difficult to guess.  Also, the T-matrix results discussed in this section
provide a benchmark for checking the accuracy of approximate formulations of light
scattering by wavelength-sized particles with one dimension much smaller than the
wavelength (Weil and Chu 1976, 1980; Uzunoglu et al. 1978; Schiffer and Thielheim
1979).

10.5 Chebyshev particles

An interesting study of electromagnetic scattering by rotationally symmetric Che-
byshev particles (see subsection 5.11.2 and Fig. 5.8) was performed by Wiscombe
and Mugnai (see Mugnai and Wiscombe 1980, 1986, 1989; Wiscombe and Mugnai
1986, 1988).  They compared the radiometric scattering and absorption characteristics
of randomly oriented Chebyshev particles having various deformation and waviness
parameters and those of volume-equivalent spheres.  The relative refractive index was
fixed at 1.5 + i0.02.  The results of Wiscombe and Mugnai largely parallel those de-
scribed in Sections 10.2 and 10.3.  Minor differences in the conclusions reached may
be the consequence of comparing the optical properties of volume-equivalent rather
than surface-equivalent spherical and nonspherical particles.  Perhaps the most inter-
esting geometrical property of Chebyshev particles is that they become partially con-
cave as the absolute value of the deformation parameter exceeds a certain threshold
range, whereas spheroids and circular cylinders are always convex bodies.  In this
regard the conclusion of Wiscombe and Mugnai that concavity almost always en-
hances the nonspherical–spherical differences appears to be especially important and
deserves further study.  Mishchenko and Travis (1994b) computed linear polarization
patterns for randomly oriented, polydisperse Chebyshev particles with ,4=n

,1.0±=ξ  and m = 1.5 + i0.02 and concluded that they were distinctly different from
those computed for volume-equivalent spheroids with a comparable degree of as-
phericity.
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10.6 Regular polyhedral particles

By definition, polyhedral particles are bounded by surfaces composed of plane facets.
Typical examples of regular polyhedrons are tetrahedrons, cubes, and hexagonal cyl-
inders.  The scattering and absorption properties of such particles have been com-
puted mostly using the geometrical optics approximation, hence assuming (explicitly
or implicitly) that the wavelength of the incident light is much smaller than the size of
the smallest facet on the particle surface.  As an example, the heavy solid curve in
Fig. 10.34 shows the phase function computed for large, randomly oriented hexagonal
ice columns at a visible wavelength.  Each hexagonal cylinder comprises three differ-
ent types of prism: a °60  prism formed by alternate side faces, a °90  prism formed
by side and end faces, and a °120  prism formed by adjacent side faces (see Fig.
10.35).  The °120  prism plays only a minor role in light scattering by ice crystals
because total internal reflections prevent any ray entering the first face from being
refracted through the second.  The most pronounced phase-function features for hex-
agonal ice crystals are the primary and secondary halos centered at °≈ 22Θ  and

°≈ 46Θ  and the strong and narrow backscattering peak.  The primary and secondary
halos are generated by the same mechanism as the rainbows discussed in Section 9.4
and correspond to minimum angles of deviation for the °60  and °90  prisms, respec-
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Figure 10.34.  Phase function versus scattering angle for polydisperse randomly oriented hex-
agonal ice columns with length-to-diameter ratio 2, polydisperse random-fractal ice particles in
 random orientation, and polydisperse spherical water droplets at a wavelength µm. 63.01 =λ
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tively, whereas the backscattering peak is caused by rays twice internally reflected by
mutually perpendicular faces (see Figs. 10.35 and 10.36).  This explains why large,
randomly oriented, circular ice cylinders generate the secondary halo and the back-
scattering peak, but not the primary halo (see the top left-hand panel in Fig. 7.7).  The
same is true of large, randomly oriented cubes and parallelepipeds (Liou et al. 1983).

The geometrical optics approximation allows one to compute the scattering func-
tions for polyhedral particles with extremely complicated shapes (see, e.g., Macke
1993; Iaquinta et al. 1995; Takano and Liou 1995; and especially Yang and Liou
1998a) and explains qualitatively many optical phenomena observed for ice crystal
clouds (Lynch and Livingston 1995).  However, the uncertain numerical accuracy and
range of applicability of this approximation are always a concern and often make de-
sirable, if not mandatory, the use of an exact theoretical technique.  Figure 10.37 il-
lustrates the application of the finite-difference time-domain method to phase-
function computations for randomly oriented, monodisperse polyhedral particles
(Yang et al. 2000b).  Such computations are also possible with the extended boundary
condition method (e.g., Laitinen and Lumme 1998; Wriedt and Comberg 1998) and
volume integral equation methods (Section 6.5) but they are still limited in terms of
the size parameter range and the ability to handle polydisperse ensembles of randomly
oriented particles.  Further theoretical efforts are obviously required in order to char-

Figure 10.35.  (a), (b) Refraction by a hexagonal ice crystal showing the rays associated with
the °22  and °46  degree halos.  (c) Double internal reflections causing the backscattering inten-
sity peak.
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acterize and quantify the specific effects of polyhedral shapes on the scattering and
absorption properties of wavelength-sized particles.

10.7 Irregular particles

Many particles encountered in natural and artificial environments have irregular and
highly variable shapes.  As an example, Fig. 10.38 demonstrates that the shapes of
natural cirrus cloud particles can significantly deviate from those of pristine hexago-
nal columns and plates.  In fact, the study by Korolev et al. (1999, 2000) indicated
that the majority of atmospheric ice particles can be highly irregular, which may ex-
plain why, when cirrus clouds are observed, halos and other optical displays charac-
teristic of regular polyhedral ice crystals are seen rather infrequently (e.g., Sassen et
al. 1994; Francis 1995; Gayet et al. 1998; Francis et al. 1998; Lawson et al. 1998).

The scattering of light by randomly (i.e., stochastically) shaped particles with size
parameters less than about 5 has been analyzed using volume integral equation meth-
ods and the second-order perturbation approximation (e.g., Lumme and Rahola 1998;
Lumme 2000; Muinonen 2000; Chamaillard and Lafon 2001; Nousiainen et al. 2001).
Nevertheless, the majority of computations for irregular particles have been based on
the geometrical optics approximation.  For example, Macke et al. (1996b) (see also
Hess et al. 1998) modeled scattering by an ensemble of imperfect hexagonal ice

Figure 10.36.  Deviation (scattering) angle versus incidence angle for m = 1.31.  The angle of
minimum deviation minΘ  is about °22  for the °60  prism and °46  for the °90  prism.  The
angle of deviation is at a minimum when the light passes symmetrically through the prism and
is greater at all other angles of incidence.  (After Lynch and Livingston 1995.)
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crystals by introducing a statistical local distortion of the crystal faces.  Specifically,
for each reflection–refraction event, the local normal to the crystal surface was tilted
randomly about its original direction.  The zenith and azimuth tilt angles were chosen
randomly from the intervals ],0[ maxθ  and  ],2,0[ π  respectively, and the degree of
crystal distortion was defined by the parameter .90max °= θt   Figure 10.39 shows the
ray-tracing component of the phase function (i.e., excluding diffraction) and also the
linear polarization for large, randomly oriented, prolate ice crystals with an average
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Figure 10.37.  Phase functions for monodisperse, randomly oriented, regular polyhedral parti-
cles and for spheroids; the relative refractive index is .109.3i38.1 9−×+  In the top row, the
polyhedra have six faces, in the middle row, ten faces.  All particles have the same size pa-
rameter, 10, along the semi-major particle dimension.  (From Yang et al. 2000b.)
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length-to-diameter ratio of 6.2 and three increasing values of the distortion parameter
t.  Since the relative refractive index is real, the ray-tracing computations do not de-
pend on the particle size relative to the wavelength.  While the t = 0.01 case shows
almost the same phase function and polarization features as those for perfect hexago-
nal columns (cf. Fig. 10.34), a further increase in the distortion parameter results in
progressively smoother phase-function and linear polarization curves.  In particular,
the primary and secondary halos and the strong backscattering phase-function peak
essentially disappear for t-values exceeding 0.1.  The side scattering is only slightly
affected by increasing crystal distortion because it primarily results from external
reflections that are not sensitive to the shape of randomly oriented convex particles.
The locations of the neutral polarization points also do not change significantly with
increasing t.

Yang and Liou (1998a) employed a similar geometrical optics approach by as-
suming that surfaces of real ice crystals are rough and consist of a large number of

Figure 10.38.  Balloon-borne ice crystal replicator data collected on 25 November 1991 near
Coffeyville, Kansas.  The approximate temperature at the replicator height is indicated along
the ordinate.  (From Heymsfield and Iaquinta 2000.)
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microscopic facets that are locally planar and randomly tilted from their orientations
corresponding to the case of a smooth surface.  The distribution of slopes was as-
sumed to be isotropic and Gaussian with a mean-square surface slope .22σ   Figure
10.40 shows the computation results for randomly oriented clusters composed of non-
overlapping hexagonal ice columns.  It is evident that increasing surface roughness
strongly affects the scattering properties of ice particles.  For the case of smooth
crystal surfaces ),0( =σ  the pronounced peaks at ,46,22 °°=Θ  and °180  as well as
the intensity maximum at °≈154Θ  are features typical of single hexagonal ice crys-
tals in random orientation (cf. Fig. 10.34).  Increasing σ  smoothes these features out
so that the phase function for 1.0=σ  consists of a strong diffraction peak and a rela-
tively featureless and flat background.  Among the other elements of the scattering
matrix, the effect of increasing roughness on the ratio 11 ab−  appears to be the most
significant and makes the scattered polarization largely neutral.

In order to model light scattering by highly irregular polyhedral ice particles,
Macke et al. (1996b) used a random shape generator based on three-dimensional
Koch fractals.  The construction of a random Koch fractal is demonstrated in Fig.
10.41.  The initial particle (zeroth-generation fractal) is a regular tetrahedron.  The
first- and second-generation regular Koch fractals are shown in the left-hand column
and are obtained via the standard process of self-replication.  Progressively disordered
versions of these particles are achieved by introducing increasing random displace-
ments of the particle vertices, as shown in the right-hand column.  The degree of dis-
tortion is defined by the maximum displacement length divided by the length of the
crystal segments (as a percentage).  Figure 10.42 shows the evolution of the ray-
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Figure 10.39.  The ray-tracing phase function and ratio 11 ab−  versus scattering angle for ran-
domly oriented hexagonal ice columns with =DL 6.2 and distortion parameters t = 0.01, 0.05,
and 0.1.  The relative refractive index is m = 1.311.
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tracing component of the phase function for large, randomly oriented, second-
generation ice fractals with increasing distortion.  The decrease in direct forward
scattering occurs at the expense of an increase in the scattering into adjacent forward-
scattering directions.  Eventually the phase function becomes almost featureless and
approaches a slope at side- and backscattering angles that stays almost constant with a
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10   Scattering and absorption properties of nonspherical particles  327

further increase in distortion.  This may imply that above a certain level of disorder,
the phase function becomes essentially invariant against the particular realization of a
random particle shape.

Figure 10.34 contrasts the phase functions computed for randomly oriented hex-
agonal ice crystals, random second-generation ice fractals with an 18% distortion, and
spherical water droplets.  The quantitative differences between these phase functions
are so large that using an incorrect particle model in retrieval algorithms can seriously
affect the results of cloud remote sensing (e.g., Mishchenko et al. 1996c; Yang et al.
2001b).  The corresponding asymmetry parameter differences are relatively smaller:

816.0cos =�� Θ  for the hexagonal ice columns, 0.752 for the random ice fractals, and
0.862 for the water droplets.  However, the effect of particle shape on the albedo of

Figure 10.41.  Deterministic (left-hand column) and randomized (right-hand column) triadic
Koch fractals.  Three generations are shown, the zeroth (top) to the second (bottom).  (After
Macke et al. 1996b).
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optically thick clouds and the associated radiative forcing of climate can be very
strong (e.g., Stephens et al. 1990; Mishchenko et al. 1996c; Liou et al. 2000).

An interesting approach to modeling nearly spherical particles with random rough
surfaces was introduced by Muinonen et al. (1996).  The size and shape of their so-
called Gaussian random spheres are specified by the mean and the covariance func-
tion of the radius vector.  The covariance function is derived from the covariance
function of the logarithmic radius, which is expanded in Legendre polynomials.  The
expansion coefficients are non-negative and provide the spectral weights of the corre-
sponding spherical harmonic components in the Gaussian sphere.  The zeroth-degree
term controls the overall particle size.  The first-degree term is mainly a translation: it
moves the particle surface relative to the origin, but the shape itself does not change
much.  The second-order term produces a deformation with an elongated shape, while
higher-degree terms create increasingly complex deformations with larger numbers of
protuberances and hollows per solid angle.  Increasing the variance of the radius en-
hances the protuberances and hollows radially.  The scattering of light by Gaussian
random spheres in the geometrical optics limit has been studied by Muinonen et al.
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Figure 10.42.  Ray-tracing phase function versus scattering angle for randomly oriented sec-
ond-generation Koch fractals with increasing distortion.  The relative refractive index is m =
1.311.  (After Macke et al. 1996b.)
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(1996) and Nousiainen and Muinonen (1999) (see also the review by Muinonen
2000).

Despite the recent progress in theoretical modeling, laboratory and in situ meas-
urements remain a major source of information about light scattering by irregular
particles.  Besides the widely acclaimed study by Perry et al. (1978), a unique body of
experimental data has been collected using the advanced laboratory setup developed
at the Free University in Amsterdam (Kuik et al. 1991; Kuik 1992; Volten et al. 1998,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.43.  Scanning electron microscope images of seven aerosol samples: (a) feldspar, (b)
red clay, (c) quartz, (d) Pinatubo volcanic ash, (e) loess, (f) Lokon volcanic ash, and (g) Sahara
sand. Panel (h) demonstrates the irregularity of a single quartz particle.  The length of the white
bars corresponds to µm 10  in panels (a), (b), (d), and (h) and to µm100  in the remaining pan-
els. (From Volten et al. 2001.)



Scattering, Absorption, and Emission of Light by Small Particles330

1999, 2001; Vermeulen 1999; Hovenier 2000; Muñoz et al. 2000a, b, 2001; Volten
2001).  For example, Fig. 10.43 shows microphotographs of seven mineral aerosol
samples studied by Volten et al. (2001), while Fig. 10.44 depicts the respective nor-
malized distributions of projected-area-equivalent-sphere radii (in micrometers).  It is
evident that all particles studied have irregular and strongly variable compact shapes.
Table 10.4 provides a brief characterization of the samples including the correspond-
ing effective radii and approximate ranges of the real part of the relative refractive
index based on the literature values for the main constituent minerals.  The results of
measurements at the wavelengths 632.8 and 441.6 nm are shown in Figs. 10.45–
10.51.  The phase functions are normalized to unity at .30°=Θ  Other elements of the
normalized Stokes scattering matrix are shown relative to the corresponding phase
function.  The measurements were taken at °5  intervals for Θ in the range from °5  to

°170  and at °1  intervals for Θ from °170  to .173°   Scattering matrix elements other
than those shown in these figures were found to be zero within the error bars, which
was a good indication that the particles formed a macroscopically isotropic and mir-
ror-symmetric scattering medium.

The phase functions for all samples studied are smooth functions of the scattering
angle and exhibit a steep forward peak and essentially no structure at side- and back-
scattering angles.  Most of the phase-function curves are remarkably shallow at side-
scattering angles (cf. Perry et al. 1978; Nakajima et al. 1989; Muñoz et al. 2000a) and
do not show the deep side-scattering minimum typical of spherical particles, caused
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Figure 10.44.  Measured normalized size distributions 10ln)()(log rrnrn =  of the projected-
area-equivalent-sphere radius r for the seven aerosol samples shown in Fig. 10.43.  (From
Volten et al. 2001.)
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Table 10.4.  Characteristics of seven mineral particle samples studied by Volten et al.
(2001)

Sample Composition )m ( effr Rm Color

Feldspar  K-feldspar, plagioclase, quartz 1.0 1.5–1.6 light pink
Red clay biotite, illite, quartz             1.5 1.5–1.7 red brown
Quartz   quartz 2.3 1.54 white
Pinatubo glass, plagioclase, amphibole, 3.0 1.5–1.7 light gray

volcanic ash magnetite 2.1
Loess K-feldspar, illite, quartz, 3.9 1.5–1.7 yellow brown
 calcite, chlorite, albite
Lokon silica glass, plagioclase, 7.1 1.5–1.6 dark brown

volcanic ash magnetite 2.1
Sahara sand quartz, clay minerals, 8.2 1.5–1.7 yellow brown
 calcium carbonate

Scattering angle (deg) Scattering angle (deg) Scattering angle (deg)

11 ab−

12 ab

12 aa

13 aa 14 aa

1a

632.8 nm
441.6 nm

Figure 10.45.  The phase function 1a  and the scattering matrix element ratios ,11 ab−  ,12 aa
,13 aa  ,12 ab  and 14 aa  versus scattering angle Θ  for feldspar.  The circles and triangles

denote measurements at wavelengths 632.8 and 441.6 nm, respectively, together with their
error bars.  The phase functions are normalized to unity at .30°=Θ  The sign of the ratio 12 ab
is opposite to that adopted elsewhere in this book. (From Volten et al. 2001.)
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by the Alexander’s dark band lying between the primary and secondary rainbows (cf.
Fig. 7.4 and Section 9.4).  Some of the phase-function curves seem to show the be-
ginning of a backscattering enhancement, but the lack of measurements for °>173Θ
makes this observation inconclusive.  The curves for the ratio 11 ab−  are also similar
for all samples and display a broad positive maximum at side-scattering angles and a
weak and narrow negative branch at backscattering angles.  The curves for the ratio

12 aa  are remarkably similar as well and deviate significantly from unity at side- and
backscattering angles: they descend from almost unity at small scattering angles to a
minimum at scattering angles close to °−° 130120  and then increase again as Θ ap-
proaches .180°   The depth of the minimum appears to be size dependent and in-
creases as the effective radius grows from µm0.1 for feldspar to µm2.8  for Sahara
sand.  The curves for the ratios 13 aa  and 14 aa  are largely featureless and deviate
significantly from –1 at backscattering angles.  The ratio 14 aa  is always larger than
the ratio 13 aa  in the backward hemisphere.  Volten et al. (2001) use the time factor

)iexp( tω  rather than )iexp( tω−  to define the Stokes parameters, which causes a sign
change in the numerical values of the ratio 12 ab  (cf. Mishchenko et al. 2000b).
Therefore, in terms of the time-factor convention adopted in this book, the results of
Volten et al. show that this ratio typically has weak positive branches at small and
large scattering angles separated by a wide range of negative values.  Most of these
observations are in qualitative agreement with the conclusions derived from the T-
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Figure 10.46.  As in Fig. 10.45, but for red clay (from Volten et al. 2001).
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matrix results for moderately aspherical polydisperse spheroids and cylinders as dis-
cussed in Sections 10.2 and 10.3.

The similarity of the laboratory results for the different mineral-particle samples
prompted Volten et al. (2001) to construct an average scattering matrix for use in
qualitative or semi-quantitative analyses of remote sensing observations or laboratory
and in situ measurements, especially in those cases when the specific microphysical
characteristics of mineral particles are not known a priori.  The average phase func-
tion was calculated by averaging the 14 phase functions measured at both wave-
lengths.  Since no scattering cross sections were available, the experimental phase
functions were averaged by giving them equal weights.  Therefore, the normalization
to unity at °= 30Θ  also holds for the average phase function.  Each measured ele-
ment ratio was multiplied by the normalized phase function measured for the particu-
lar sample and wavelength, thereby yielding elements instead of element ratios.  Fi-
nally, each element was averaged over the respective 14 measurements and divided
by the average phase function.  The resulting average phase function and element
ratios are depicted in Fig. 10.52.  For comparison, this figure also shows the bands of
sample variability, defined as the areas between the highest and lowest measured val-
ues in Figs. 10.45–10.51 not taking into account the error bars for the individual
measurements.  The laboratory data displayed in Figs. (10.45)–(10.52) were presented
by Volten (2001) in tabular form and will undoubtedly prove very useful in future
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Figure 10.47.  As in Fig. 10.45, but for quartz (from Volten et al. 2001).
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analyses of light scattering by irregular particles.  For example, the laboratory data for
green clay particles with an effective radius of µm55.1  (Muñoz et al. 2000b) gener-
ally agree with the overall trends exhibited by the average scattering matrix elements
and fall within the bands of sample variability (Fig 10.53).  This comparison suggests
that the average model derived by Volten et al. (2001) may indeed be representative
of ensembles of irregular, compact mineral particles with sizes comparable to and
larger than a wavelength.

10.8 Statistical approach

Since theoretical computations for irregular particles with sizes comparable to the
wavelength remain problematic, several attempts have been made to model the scat-
tering and absorption properties of irregular particles using simple, regular shapes.
These attempts are based on the realization that in addition to size and orientation
averaging, as discussed in Section 10.1, averaging over shapes may also prove to be
necessary in many cases.  More often than not, natural and artificial particle samples
exhibit a great variety of shapes, thereby making questionable the ability of a single
nonspherical shape to represent scattering properties of a shape mixture.  We have
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Figure 10.48.  As in Fig. 10.45, but for Pinatubo volcanic ash (from Volten et al. 2001).
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seen, indeed, that even after size and orientation averaging, essentially any determi-
nistic particle shape produces a unique, shape-specific scattering pattern, whereas
experimental measurements for real nonspherical particles usually show smooth, fea-
tureless patterns.  As an example, Plate 10.7(a) depicts the phase function for a
monodisperse sphere with radius 1.163 µm and surface-equivalent, monodisperse,
randomly oriented prolate spheroids with aspect ratios ε  increasing from 1.2 to 2.4.
The wavelength of the light in the surrounding medium is 0.443 µm, and the relative
refractive index is 1.53 + i0.008.  Whereas the monodisperse curves form a tangle of
lines with no clear message, averaging over sizes, as shown in Plate 10.7(b), makes
the phase functions much smoother and reveals a systematic change with increasing
aspect ratio that renders each phase-function curve unique and dissimilar to all other
curves.  However, this uniqueness is suppressed and ultimately removed by averaging
over an increasingly wide aspect-ratio distribution of prolate spheroids, centered on

,8.1=ε  Plate 10.7(c), and by a subsequent mixing of prolate and oblate spheroids,
Plate 10.7(d).  The resulting phase function (the red curve in Plate 10.7(d)) is very
smooth and featureless and, in fact, almost perfectly coincides with the phase function
experimentally measured by Jaggard et al. (1981) for micrometer-sized, irregularly
shaped soil particles (cf. Fig. 10.54).  Both phase functions show the typical en-
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Figure 10.49.  As in Fig. 10.45, but for loess (from Volten et al. 2001).



Scattering, Absorption, and Emission of Light by Small Particles336

hancement of side scattering and suppression of backscattering relative to the phase
function for surface-equivalent spheres.

This example may have two important implications.  First, it may indicate that the
often observed smooth scattering-angle dependence of the elements of the scattering ma-
trix for samples of natural and artificial nonspherical particles is largely caused by the
diversity of particle shapes in the samples.  Second, it may suggest that at least some
scattering properties of ensembles of irregular particles can be adequately modeled using
a polydisperse shape mixture of simple particles such as spheroids.  The assumptions that
particles chosen for the purposes of ensemble averaging need not be in one-to-one corre-
spondence with the ensemble of irregular particles of interest and that they may have
relatively simple shapes are central to the so-called statistical approach (Shifrin and
Mikulinsky 1987; Mugnai and Wiscombe 1989; Bohren and Singham 1991).  The need
for this kind of approach stems from the fact that it is often impossible to specify exactly
the shapes and sizes of all particles forming a natural or artificial sample.  Even if it were
possible, the low efficiency of the exact numerical techniques applicable to arbitrarily
shaped particles would entail a prohibitively expensive computational effort.  However,
the availability of techniques like the T-matrix method, which is very fast for randomly
oriented, rotationally symmetric particles and is applicable to large size parameters,
makes the statistical approach feasible.  Applications of this approach by Bohren and
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Figure 10.50.  As in Fig. 10.45, but for Locon volcanic ash (from Volten et al. 2001).
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Huffman (1983, Chapter 12), Nevitt and Bohren (1984), Hill et al. (1984), Mishchenko
et al. (1997a), and Goncharenko et al. (1999) suggest that it may indeed be a valuable
practical tool in many cases.

10.9 Clusters of spheres

The scattering and absorption properties of simple two-sphere clusters (bispheres)
have been extensively studied by Mishchenko et al. (1995) using the superposition T-
matrix method.  Panels (b) and (c) of Plate 10.8 depict the degree of linear polarization
for scattering of unpolarized incident light, i.e., the ratio
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as a function of the zenith angle of the scattering direction and the monodisperse con-
stituent-sphere size parameter for two orientations of the bisphere axis with respect to
the laboratory reference frame.  The bispheres have identical touching components,
and the bisphere axis is defined as the line connecting the constituent-sphere centers.
These plots show that the bisphere polarization is strongly dependent on the particle
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Figure 10.51.  As in Fig. 10.45, but for Sahara sand (from Volten et al. 2001).
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orientation and reveals a much more complicated structure than the single-sphere po-
larization pattern shown in Plate 10.8(a).  In particular, the lack of axial symmetry for
the scattering geometry in Plate 10.8(c) makes the linear polarization non-zero at

°= 0scaϑ  and, more noticeably, at .180sca °=ϑ  Also, the number of local maxima
and minima has increased sharply.  This means that in addition to the single-sphere
resonant structure the bispheres exhibit a significant contribution due to the coopera-
tive scattering of light from the two constituent spheres.

Plate 10.8(d) shows the calculation results for monodisperse bispheres in random
orientation.  Somewhat unexpectedly, we see a polarization pattern that is strikingly
similar to that of single monodisperse spheres, Plate 10.8(a).  The only obvious dif-
ference is that the amplitudes of the local maxima and minima are reduced, although
their locations and numbers are exactly the same.  This means that averaging over
bisphere orientations largely cancels the cooperative scattering contribution and
slightly blurs the single-sphere resonant structure.  This result is well illustrated by
Fig. 10.55, which shows the elements of the normalized Stokes scattering matrix for a
randomly oriented two-sphere cluster with identical touching components, together
with those for a single sphere with size parameter equal to that of the cluster compo-
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12 ab

12 aa

13 aa 14 aa

1a

Scattering angle (deg) Scattering angle (deg) Scattering angle (deg)

Figure 10.52.  The squares show the average phase function 1a  (normalized to unity at
)30°=Θ  and the scattering matrix element ratios ,11 ab−  ,12 aa  ,13 aa  ,12 ab  and

14 aa versus scattering angle .Θ   The gray bands indicate the domains spanned by the meas-
urements for individual particle samples. The sign of the ratio 12 ab  is opposite to that adopted
elsewhere in this book. (From Volten et al. 2001.)
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nents for comparison.  It is obvious that the dominant feature in the cluster scattering
is the single scattering from the component spheres, albeit diminished by orientation
averaging.  The only distinct manifestations of the fact that the bisphere is a non-
spherical particle are the departure of the ratio 12 aa  from unity and the detectable
lack of equality of the elements 3a  and .4a   These two effects are especially notice-
able at backscattering angles and are further illustrated in Fig. 10.56, which shows the
linear and circular depolarization ratios for randomly oriented bispheres with touching
components as a function of the component-sphere size parameter.  Both depolariza-
tion ratios vanish in the limit of zero size parameter, but become appreciable for x � 1
and reach especially large values at size parameters from about 15 to 20.

Figures 10.57 and 10.58 show ratios of bisphere and single-sphere quantities: the
optical cross sections, the single-scattering albedo, and the asymmetry parameter.  The
bispheres are randomly oriented and the size of the single sphere is equal to the size of
each bisphere component.  Interestingly, all these ratios are nearly constant at size pa-
rameters exceeding 15.  The ratio of the extinction cross sections (the solid curve in Fig.
10.57) shows both high-frequency ripple and low-frequency oscillations.  However, the
amplitude of the oscillations is small, and the entire curve for size parameters exceeding
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Scattering angle (deg) Scattering angle (deg) Scattering angle (deg)

Green clay measurements 
Average

Figure 10.53.  The circles depict the measured phase function 1a  and scattering matrix ele-
ment ratios ,11 ab−  ,12 ab  ,12 aa  ,13 aa  and 14 aa  versus scattering angle for green clay
particles at a wavelength 633 nm (from Muñoz et al. 2000b).  The squares and the gray bands
indicate the average scattering matrix and the domains spanned by the measurements for seven
mineral particle samples (Volten et al. 2001).
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6 is close to 1.8–1.85.  The ratio of the orientation-averaged geometrical cross section of
a bisphere to the geometrical cross section of a sphere with size equal to that of each
bisphere component is 1.849.  Therefore, in the geometrical optics limit the ratio of the
bisphere and single-sphere extinction cross sections must be equal to this value, 1.849.
It can be seen that the extinction ratio curve shows a distinct trend toward this limit with
increasing size parameter.  However, it is interesting that the extinction ratio is close to
the geometrical optics limit for size parameters as small as 7.

Despite a small-amplitude high-frequency ripple, the ratio of the absorption cross
sections (the broken-and-dotted curve in Fig. 10.57) is close to 2 for the entire range of
size parameters shown, thus indicating that the absorption cross section is roughly pro-
portional to the particle volume.   However, if the imaginary part of the relative refrac-
tive index is non-zero then in the limit of infinite size parameter all light refracted into
the particle is absorbed and does not escape.  Therefore we should expect that the ratio
of the absorption cross sections should decrease with increasing size parameter and ap-
proach the geometrical cross section ratio of 1.849, as seen indeed in Fig. 10.57.  The
scattering cross section ratio (the dotted curve in Fig. 10.57) closely follows the extinc-
tion cross section ratio except at size parameters smaller than unity, where extinction is
dominated by absorption.

The single-scattering albedo ratio (the dotted curve in Fig. 10.58) is especially
size-parameter independent for size parameters greater than unity and varies within a
very narrow range, .02.01±   The asymmetry parameter ratio (the solid curve in Fig.
10.58) is also close to unity.  However, all these ratios, except for the absorption cross
section ratio, rise substantially as the size parameter becomes smaller than 2, which
demonstrates the increasing influence of cooperative scattering effects for smaller
particles.

As we have seen previously, one of the main effects of averaging scattering
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Figure 10.54.  Phase functions measured by Jaggard et al. (1981) for natural wavelength-sized
soil particles and computed for a broad shape distribution of polydisperse, randomly oriented
spheroids and surface-equivalent spheres.
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characteristics over a size distribution is to wash out the resonance structure typical of
monodisperse particles.  This effect facilitates comparisons of light-scattering proper-
ties of particles with different shapes and is illustrated in Fig. 10.59, which shows the
elements of the normalized Stokes scattering matrix for power law size distributions
of spheres and of randomly oriented bispheres.  This figure demonstrates again that
the angular dependence of the elements of the scattering matrix for bispheres is simi-
lar to that for single spheres with effective size parameter equal to the effective
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the same size parameter 40 and the same relative refractive index 1.5 + i0.005.
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bisphere monomer size parameter.  The ratios 11 ab−  and 12 ab  for the bispheres
and the single spheres are especially similar.  The phase functions 1a  are also close to
one another except at scattering angles smaller than ,10°  where the bisphere intensity
is nearly twice that for single spheres because of the constructive interference of light
singly scattered by bisphere components in the exact forward direction (Mishchenko
1996a).  Again, the only unequivocal indications of particle nonsphericity for
bispheres are the differences between the ratios 13 aa  and 14 aa  and the departure
of the ratio 12 aa  from unity.  For comparison, Fig. 10.59 also depicts the scattering
matrix elements for polydisperse, randomly oriented prolate spheroids with aspect
ratio 2 and effective volume-equivalent-sphere size parameter 10.  It is seen that, un-
like the case for the spheres and the bispheres, the spheroid phase function exhibits
enhanced side scattering and suppressed backscattering, while the degree of linear
polarization is positive at scattering angles around .120°   The differences between the
ratios ,12 aa  ,13 aa  ,14 aa  and 12 ab  for the spheres and the spheroids are also
greater than those for the spheres and the bispheres.

Figures 10.60 and 10.61 depict the scattering matrix elements for two distinctly
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Figure 10.56.  Linear (solid curve) and circular (dotted curve) backscattering depolarization ratios
versus constituent-sphere size parameter for randomly oriented monodisperse bispheres with
equal touching components and a relative refractive index 1.5 + i0.005.
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different types of sphere cluster, each with sN  identical wavelength-sized compo-
nents, for 5.or  4, 3, 2, ,1s =N   In Fig. 10.60 the cluster is a straight chain whereas in
Fig. 10.61 the spheres are packed into a tetrahedral lattice.  These two types of clus-
ters represent extrema in the packing density of touching spheres.  A quick inspection
of the figures reveals that the configuration of the component spheres can have a sig-
nificant effect on the cluster scattering properties.  Aside from the increase in the for-
ward-scattering value of the phase function caused by the constructive interference of
the light singly scattered by the cluster components in the exact forward direction, the
matrix elements for the straight chain (Fig. 10.60) attain a form that is nearly inde-
pendent of sN  for .2s ≥N  As for bispheres, clustering results in a damping of the
oscillations in the matrix elements compared with those for a single sphere, yet the
locations of the maxima and minima for the chain are essentially the same as those for
the single-sphere case.  The obvious exception is the ratio ,12 aa  which is identically
unity for the sphere.  However, the matrix elements for the densely packed cluster
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Figure 10.57.  Ratios of extinction (solid curve), scattering (dotted curve), and absorption (bro-
ken-and-dotted curve) cross sections for monodisperse randomly oriented bispheres with equal
touching components and for monodisperse single spheres, versus single-sphere size parameter.
For bispheres, the horizontal axis shows the values of the constituent-sphere size parameter.  The
relative refractive index is 1.5 + i0.005.
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change significantly with increasing sN  and appear to approach a saturation level in
which all oscillations eventually vanish.  The effect of packing density is especially
noticeable in the backward-direction values of the ratios ,12 aa  ,13 aa  and 14 aa
and, thus, in increased linear and circular depolarization ratios.

To explain the differences in the scattering patterns for these two types of cluster
configuration, we first note that the two major effects of aggregation on scattering are
interference of the fields scattered by the cluster components in the far-field zone and
multiple internal scattering among the components.  When the size parameters of the
spheres are of order unity or greater (as is the case for Figs. 10.60 and 10.61), aver-
aging over a uniform orientation distribution acts to zero out the effect of interference
in all directions but the exact forward direction.  The differences between the single-
sphere and orientation-averaged cluster scattering patterns are therefore caused
mostly by multiple scattering.  Multiple scattering for the linear chain configuration
occurs primarily between neighboring spheres, and because of this the scattering ma-
trix elements for 3s ≥N  do not differ much from those of the bisphere – except for
the phase function at .0°=Θ  However, the packed-cluster configuration offers a
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Figure 10.58.  As in Fig. 10.57, but for the ratios of the single-scattering albedos (dotted curve)
and of the asymmetry parameters (solid curve).
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much greater opportunity for multiple scattering among all the spheres forming the
cluster and results in stronger differences between the single-sphere and random-
orientation-cluster elements of the scattering matrix.

Based on the results for linear chains of spheres, we may expect that scattering
patterns for low-density aggregates of wavelength-sized particles look similar to those
for bispheres.  This is indeed demonstrated by the laboratory data measured by
Muñoz et al. (2000b, 2001) for a sample of fly ash aerosols (fluffy aggregates com-
posed of nearly spherical inorganic particles; see Fig. 10.62).  Figure 10.63 shows that
the normalized scattering matrix for this sample is distinctly different from the aver-
age scattering matrix for compact irregular particles derived by Volten et al. (2001)
(see Section 10.7).  Moreover, the experimental results depicted in Fig. 10.63 appear
to be remarkably similar to the results of theoretical computations displayed in Fig.
10.59.  In particular, the phase function of fly ash particles has the deep side-
scattering minimum typical of single spheres and bispheres, the ratios 13 aa  and

14 aa  tend to values close to –1 as the scattering angle approaches ,180°  and the
ratio 12 aa  is closer to unity than that for compact nonspherical particles.  Also, the
ratios 11 ab−  and 12 ab  for fly ash and compact irregular particles are qualitatively
similar to those computed for polydisperse bispheres and spheroids, respectively.
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Since clusters of small monomers are abundant in various natural and artificial
environments, cluster optics is an important and active area of research.  Detailed
information and further references can be found in the reviews by Fuller and Mack-
owski (2000) and Sorensen (2001) and the book edited by Markel and George (2001).
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Figure 10.60.  Orientation-averaged scattering matrix elements for linear chains of sN  equal
spheres.  The component-sphere size parameter is 5 and the relative refractive index is 1.5 +
i0.005. (After Mackowski and Mishchenko 1996.)
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10.10 Particles with multiple inclusions

Another interesting class of scatterers are particles with multiple randomly positioned
inclusions.  Typical examples are water droplets and sulfate aerosols in the terrestrial
atmosphere that contain various insoluble impurities (Chýlek et al. 1995, 1996), ice
particles with internally trapped air bubbles and mineral and soot inclusions (Macke
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Figure 10.61.  As in Fig. 10.60, but for packed clusters of sN  equal spheres.  (After
Mackowski and Mishchenko 1996.)
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Figure 10.62.  Scanning electron microscope photograph of inorganic fly ash particles pro-
duced by the combustion of powdered coal in electric powerplants.  The length of the white bar
corresponds to µm. 100   (From Muñoz et al. 2000b.)
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Fly ash measurements
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Figure 10.63.  The circles depict the measurements by Muñoz et al. (2000b) for fly ash parti-
cles at a wavelength 633 nm.  The squares show the average scattering matrix derived by
Volten et al. (2001) using measurements for seven samples of compact mineral particles, while
the gray bands indicate the domains of sample variability.  The sign of the ratio 12 ab  is oppo-
site to that adopted elsewhere in this book.
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et al. 1996a; C.-Labonnote et al. 2001), and inhomogeneous composites of mineral
particles.

Light scattering by wavelength-sized spheres with a few inclusions can be com-
puted using the superposition T-matrix method (cf. Section 5.9).  When the host parti-
cle is much larger than the wavelength of the incident light, the only feasible ap-
proach is the Monte Carlo ray-tracing procedure described in Section 7.4.  Figures
10.64 and 10.65 show the ray-tracing part of the phase function for a large spherical
host particle with two types of small inclusions.  The host has diameter µm 50=D
and refractive index relative to vacuum 1.55.  The latter is a value typical of the real
part of the refractive index of silicate materials.  The inclusions are modeled as a
gamma distribution, Eq (5.245), of spherical particles, with effective radius µm 5.0
and effective variance 0.1.  The refractive indices of the inclusions relative to vacuum
are 1 (type 1, shown in Fig. 10.64) and 2 (type 2, Fig. 10.65).  Type-1 inclusions rep-
resent small voids inside the host particle, whereas type-2 inclusions correspond to
highly refractive impurities.  The vacuum wavelength of the light is fixed at µm. 55.0
The overall scattering and absorption effect of the inclusions depends on their “optical
thickness” ,ext0 ��= CDnτ  where 0n  is the inclusion number density and �� extC  the
average extinction cross section per inclusion.  For reference, the total numbers of
type-1 and type-2 inclusions inside the diameter-µm-50  spherical host corresponding
to 25=τ  are 29 469 and 18 967, respectively.
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Figure 10.64.  The ray-tracing part of the phase function versus scattering angle for a 50-µm-
diameter spherical particle containing type-1 inclusions.  The optical thickness of the inclusions
increases from 0=τ  (no inclusions) to 25=τ  (after Mishchenko and Macke 1997).
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Figures 10.64 and 10.65 show that the ray-tracing phase function for a clear host
(i.e., one having no inclusions) exhibits the pronounced geometrical optics features
that are typical of large spherical particles and are discussed in detail in Section 9.4.
With increasing ,τ  these features rapidly weaken and the ray-tracing phase functions
become more and more isotropic, in qualitative agreement with the results of labora-
tory measurements by McGuire and Hapke (1995).  Similarly, the effect of inclusions
on the phase function of hexagonal ice crystals is to wash out the primary and secon-
dary halos and the backscattering peak (Macke et al. 1996a).  These effects can be
explained qualitatively by increased multiple scattering among the inclusions, which
tends to randomize the directions of rays exiting the host.  Accordingly, the total
asymmetry parameter of the composite spherical particles decreases from approxi-
mately 0.815 for 0=τ  to approximately 0.5 for 25=τ  (Fig. 10.66).

When the size of the inclusions is much smaller than the wavelength, a widely
used approach is to assume that the composite particle is homogeneous and has an
“effective” permittivity obtained by combining in a certain way the permittivities of
the host and the inclusions.  Several effective-medium approximations and their
ranges of applicability are reviewed by Sihvola (1999) and Chýlek et al. (2000).

10.11 Optical characterization of nonspherical particles

There are two basic reasons why the optical characterization of nonspherical particles
is significantly more involved than that of spherical particles.  First, solving the direct
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Figure 10.65.  As in Fig. 10.64, but for type-2 inclusions (after Mishchenko and Macke 1997).
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scattering problem for nonspherical particles is more difficult than applying the stan-
dard Lorenz–Mie theory for spheres.  Second, solving the inverse problem requires
the introduction of at least two (and often many more) additional model parameters
describing the particle shape and the orientation distribution function.  These addi-
tional parameters are often unknown and must be retrieved from the experimental
data, along with the particle size and the relative refractive index.

Apparently the simplest task is the detection of preferentially oriented nonspheri-
cal particles using the qualitative criteria summarized in Section 4.9.  We have al-
ready mentioned in this regard observations of interstellar polarization and measure-
ments of the depolarization of radio waves propagating through falling hydrometeors.
Another technique involves directing the incident unpolarized beam along the z-axis
of the laboratory reference frame and measuring the two-dimensional angular distri-
bution of the scattered intensity.  The lack of axial symmetry in this distribution will
be an unequivocal indication of the presence of oriented nonspherical particles (see
Figs. 10.1–10.5 and Section 10.1).  This technique will fail, however, when axially
symmetric particles are present whose rotation axes are also directed along the z-axis
(note the upper left panels of Figs. 10.2–10.5).  Also, it may be difficult to use such
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Figure 10.66.  Total asymmetry parameter for 50-µm-diameter composite spherical particles
containing type-1 and type-2 inclusions, with optical thickness varying from 0=τ  (no inclu-
sions) to =τ 25 (after Mishchenko and Macke 1997).
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measurements to say something specific about the particle microphysical characteris-
tics.  We have seen in Section 10.1 that the number of patches per unit solid angle in
the scattering diagram may be indicative of the particle size parameter, while features
such as the bright vertical bands in the upper right panels of Figs. 10.3 and 10.5 may
suggest the presence of cylindrical particles with axes perpendicular to the scattering
plane.  However, more research is obviously needed in order to realize fully the po-
tential information content of two-dimensional scattering measurements (e.g.,
Sachweh et al. 1995; Barthel et al. 1998; Dick et al. 1998; Kaye 1998; Braun and
Krieger 2001; Crosta et al. 2001; Prabhu et al. 2001; Secker et al. 2001).

An interesting laboratory technique for detecting nonspherical aerosols is to sub-
ject the particles in question to a pulsed external electric field and look for accompa-
nying changes in the particle optical properties (Kapustin et al. 1975, 1980).  The
amplitude of the field is chosen to be sufficient to cause a significant degree of parti-
cle alignment provided that the aerosols are nonspherical, while the duration of the
pulse is long enough to allow an equilibrium orientation to be reached.  After the
electric field is turned off, the particles return to random orientation, owing to
Brownian motion.  Any differences in the elements of the phase and extinction matri-
ces or the total optical cross sections between the states with the electric field turned
on and off indicate the presence of nonspherical particles.  Furthermore, the magni-
tude of the differences and the relaxation time for the disorientation process after the
electric field is turned off may indicate a value for the average particle aspect ratio.

As we have seen previously (cf. Section 4.9), the only unequivocal indicator of
nonsphericity for randomly oriented particles forming a macroscopically isotropic and
mirror-symmetric medium is violation of the Lorenz–Mie identities )()( 1122 ΘΘ FF ≡
and ).()( 3344 ΘΘ FF ≡   As a consequence, the linear and circular backscattering de-
polarization ratios defined by Eqs. (10.2) and (10.3) become non-zero.  Backscatter-
ing depolarization measurements are widely used for detecting and characterizing
nonspherical particles in lidar (Gobbi 1998; Sassen 2000) and radar (Aydin 2000;
Bringi and Chandrasekar 2001) atmospheric remote sensing and biomedicine
(Schmitt and Xiang 1998; de Boer et al. 1999).  For example, Liu and Chandrasekar
(2000) and Straka et al. (2000) reviewed the foundation of fuzzy logic systems for
classification of hydrometeor type based on polarimetric radar observations.  Sassen
(1991) developed a depolarization classification of different cloud-particle types
based on data collected by a helium–neon continuous-wave laser-lidar analog device
in the laboratory and field during the early 1970s (Fig. 10.67).  Browell et al. (1990)
used lidar depolarization observations to differentiate between various types of polar
stratospheric clouds.  Although most lidars operating at visible wavelengths measure
the linear depolarization ratio, measurements of the circular depolarization ratio are
also gaining popularity (Woodard et al. 1998).

The strong depolarization of light by large transparent particles such as ice cloud
crystals at visible wavelengths (Fig. 10.67) is traditionally attributed to refractions
and multiple internal reflections (Fig. 7.2), which tend to randomize the polarization
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plane of rays exiting the particle (Liou and Lahore 1974).  However, the geometrical
optics concepts of rays, refractions, and reflections become inapplicable when the size
of the particle is comparable to the wavelength.  Yet wavelength-sized particles can
produce even larger depolarization ratios, as demonstrated in Fig. 10.68.  An inter-
esting feature of essentially all the depolarization curves shown in this figure and
computed with the exact T-matrix method is a rapid increase in Lδ as the effective
size parameter increases from 0 to about 10.  Moreover, maximal -Lδ values for most
shapes are observed at size parameters close to and sometimes slightly smaller than
10.  The T-matrix results show no obvious relationship between Lδ  and the particle
aspect ratio.  Even spheroids with aspect ratio as small as 1.05 (a 2.5% deviation from
the perfect spherical shape) produce strong depolarization.  The largest -Lδ values are
generated by prolate spheroids with aspect ratios as small as 1.2 (a 10% deviation
from a sphere).  Furthermore, Lδ  for spheroids and, especially, cylinders tends to
saturate with increasing aspect ratio.

The steep rise in Lδ  with size parameter in the range 0 � effx � 10 exhibited by the
T-matrix results can explain the initial increase in lidar linear depolarization with time
for very young, rapidly growing aircraft condensation-trail (contrail) particles ob-
served by Freudenthaler et al. (1996).  Figure 10.68 suggests that further growth of
ice particles may lead to a decrease in Lδ with time, which was indeed observed by
Sassen and Hsueh (1998).  Furthermore, the T-matrix results seem to explain the oc-
currence of unusually large depolarization ratios for contrails L(δ ~ 0.65), which ex-
ceed significantly the values normal for most cirrus L(δ ~ 0.35–0.5).  Similar T-
matrix computations have been used by Carslaw et al. (1998), Toon et al. (2000),
Beyerle et al. (2001), and Liu and Mishchenko (2001) to explain the results of lidar

Figure 10.67.  Results of early laboratory and field studies showing the wide range of linear
depolarization ratios encountered from various types of hydrometeors at visible wavelengths
(from Sassen 1991).
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observations of polar stratospheric cloud particles, which are another interesting ex-
ample of natural wavelength-sized scatterers generating strong depolarization ratios.

In view of the apparent strong dependence of depolarization on size parameter for
wavelength-sized particles, measuring depolarization at multiple wavelengths should
be very useful for retrieving particle size and studying its temporal evolution.  As an
example, Plate 10.9 shows a variety of remote sensing observations of a mesoscale
cirrus cloud band with contrails along its edges performed by Sassen et al. (2001) on
5 March 1999.  It can be seen from the fish-eye images and the depolarization
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Figure 10.68.  Linear backscattering depolarization ratio versus effective size parameter for
polydisperse, randomly oriented ice spheroids with aspect ratios ranging from 1.05 to 2.6 and
circular cylinders with various length-to-diameter or diameter-to-length ratios.  The relative
refractive index is 1.311 and the size distribution is given by Eq. (5.246) with 3−=α  and

.1.0eff =v   (After Mishchenko and Sassen 1998.)
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displays that the contrails occurred just above the cirrus cloud top at the very begin-
ning (missing the contrail leading edge) and at the end of the measurement period,
when two contrails passed overhead in succession. Although the backscattered inten-
sity displays at the µm 532.0  (bottom left panel) and µm06.1  (bottom right) wave-
lengths are similar, there are large differences between the respective depolarization
displays.  The significantly smaller -Lδ values in the contrail at the longer wavelength
imply the presence of ~ µm 2  diameter crystals (cf. Fig. 10.68), despite the fact that
the contrails were probably of order one hour old when observed in the zenith.  In
contrast, the -Lδ values in the main cirrus cloud at the two wavelengths are quite
similar, as can be expected of nonabsorbing particles with sizes much larger than a
wavelength.  It can, therefore, be concluded that contrails are unique among ice
clouds in their ability to generate and maintain sufficiently tiny ice-particle sizes to
manifest the depolarization dependence typical of the transition zone between the
Rayleigh and the geometrical optics region of size parameters.

Another interesting feature of the lidar displays in Plate 10.9 is the significant de-
polarization caused by the elevated aerosol layer centered at about 5.3 km.  This aero-
sol was almost certainly a product of the transport of dust from Asian dust storms.  As
more clearly seen in Fig. 10.69, the -Lδ values at the three lidar wavelengths reveal
differences which may be attributed partly to significant noise in the weak aerosol
backscattering and partly to the decreasing contribution of weakly depolarizing
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Figure 10.69.  Comparison of 5-minute-averaged (1854–1859 UTC) linear depolarization pro-
files for three lidar wavelengths during a period when the backscattered intensity from the ele-
vated aerosol layer was relatively strong.  Table 10.5 gives the depolarization values at the
~5.25 km aerosol maximum in terms of the total molecular and aerosol and aerosol-only values.
(From Sassen et al. 2001.)
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molecular scattering to the total molecular plus aerosol depolarization with increasing
wavelength (cf. Eq. (7.6), which indicates that the molecular contribution to the total
molecular plus aerosol scattering matrix decreases as the inverse fourth power of
wavelength).  Table 10.5 shows that when the molecular backscattering contributions
are approximately removed, the aerosol-only peak depolarization values are about
0.2–0.25, which is similar to the strong Kosa dust-dominated depolarization measured
in Japan (Murayama et al. 1999; Sassen 2000).  The spectral effect of molecular
scattering on the total molecular plus cloud depolarization, the feature at about 9 km
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Figure 10.70.  Linear and circular backscattering depolarization ratios versus imaginary part of
the relative refractive index for polydisperse, randomly oriented oblate spheroids with

.7.1=ba   The size distribution is given by Eq. (5.246) with 3−=α  and .1.0eff =v   The ef-
fective surface-equivalent-sphere size parameter is 15eff =x  and the real part of the relative
refractive index is 1.31.

Table 10.5.  Linear depolarization ratio at the ~ 5.25 km
aerosol maximum in terms of the total molecular and
aerosol )( Lδ  and aerosol-only )( aL,δ  values at the
three lidar wavelengths (after Sassen et al. 2001)

)m( 1λ Lδ aL,δ

0.532 0.08 0.21
0.694 0.09 0.23
1.06 0.16 0.25

µ
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in Fig. 10.69, is significantly weaker because of the much stronger cloud backscat-
tering.

We saw in Section 10.2 that increasing imaginary part of the relative refractive in-
dex Im  reduces and eventually eliminates the differences between the scattering pat-
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Figure 10.71.  Ratios of the elements of the normalized Stokes scattering matrix for a latex
two-sphere cluster in random orientation.  The solid curves depict laboratory data of Bottiger et
al. (1980) at a wavelength 441.6 nm, whereas the dotted curves show the results of T-matrix
computations for a component-sphere diameter 1129 nm.
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terns of spherical and surface-equivalent convex nonspherical particles.  Accordingly,
increasing Im  leads to reduced and ultimately zero linear and circular depolarization
ratios, as Fig. 10.70 illustrates.  This factor limits the usefulness of depolarization
observations of cirrus clouds and contrails at infrared wavelengths (Eberhard 1992),
where water ice is strongly absorbing (Warren 1984).

A more detailed characterization of randomly oriented nonspherical particles can
be achieved by exploiting multi-angle measurements of the full scattering matrix
(e.g., Volten et al. 1999).  The results can be especially precise when one or more
particle microphysical parameters are known beforehand.  As an example, Figs. 10.71
and 10.72 parallel Figs. 9.30 and 9.31 in showing the results of laboratory measure-
ments (Bottiger et al. 1980) and T-matrix computations (Mishchenko and Mackowski
1996) for a two-sphere cluster with touching components.  An electrostatically levi-
tated latex bisphere was subject to Brownian motion and rapidly changed its orienta-
tion during the measurement.  Therefore, although the sample was a single particle,
the measurement of the scattering matrix was equivalent to that for randomly oriented
monodisperse particles.  According to Bottiger et al., this was indeed corroborated by
simultaneous measurements of the (1,3), (1,4), (2,3), (2,4), (3,1), (3,2), (4,1), and
(4,2) elements of the scattering matrix, which were all found to be zero within the
experimental accuracy (cf. Eq. (4.51)).  Since the particle morphology and relative
refractive index are known, the only free parameters are the diameters of the compo-
nent spheres.  Mishchenko and Mackowski have found that good agreement between
the results of T-matrix computations and laboratory measurements can be obtained for
component sphere diameters equal to 1129 nm (Fig. 10.71).  Figure 10.72 shows the
results for sphere diameters 1108 nm and 1150 nm, which give limits on the plausible
range of diameters.  This illustrates once again the potential accuracy of particle siz-
ing techniques based on measurements of the scattering matrix.

0 60 120 180 0 60 120 180
Scattering angle (deg) Scattering angle (deg)

−100

0

100

−100

0

100

(%
)

1
1

a
b

(%
)

1
1

a
b

Figure 10.72.  As in Fig. 10.71, but for component-sphere diameters 1108 nm (left-hand panel)
and 1150 nm (right-hand panel).
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Further reading

The book edited by Mishchenko et al. (2000a) is a major systematic source of infor-
mation on calculations, measurements, and applications of electromagnetic scattering
by nonspherical and heterogeneous particles. Further information can be found in the
special journal issues edited by Shafai (1991), Barber et al. (1994), Hovenier (1996),
Lumme (1998), Mishchenko et al. (1999a,b), and Videen et al. (2001) as well as in the
conference proceedings edited by Schuerman (1980), Wriedt et al. (1996), Wriedt and
Eremin (1998), Obelleiro et al. (1999), and Videen et al. (2000b).  The book by Colton
and Kress (1998) treats mathematical and numerical aspects of the inverse scattering
problem for electromagnetic and acoustic waves.

Scattering by randomly and preferentially oriented spheroids and finite circular
cylinders in the geometrical optics limit is discussed by Yang and Cai (1991), Arnott
and Marston (1991), Macke and Mishchenko (1996), Kokhanovsky and Nakajima
(1998), Langley and Marston (1998), and Marston (1999).  Listed in Sassen and Ar-
nott (1998) are several feature journal issues discussing optical phenomena associated
with natural ice crystals.
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Appendix A

Spherical wave expansion of a plane wave in the
far-field zone

In this appendix we derive Eq. (2.57) following the approach described by Saxon
(1955b).  We begin with the well-known expansion of a plane wave in scalar spheri-
cal harmonics (Jackson 1998, page 471):
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where ϑ  and ϕ  are spherical angular coordinates of the unit vector r̂  and m
lP  are

associated Legendre functions defined in terms of Legendre polynomials lP  as fol-
lows:

l
l

l

lllm

m
mmm

l x
xl

xPxP
x

xxP )1(
d
d

!2
1)(     ),(

d
d)1()1()( 222 −=−−=   (A.3)

with ].1 ,1[−∈x   Using the asymptotic form (Arfken and Weber 1995, p. 682)

,
2

sin1)( �
�

�
�
�

� −=
∞→

ly
y

yj
y

l
π   (A.4)



Appendix A 361
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Substituting this expression in Eq. (A.1) and making use of the completeness relation
for spherical harmonics (Jackson 1998, p. 108)
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and the symmetry relation
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we derive, after simple algebra,
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Appendix B

Wigner functions, Jacobi polynomials, and
generalized spherical functions

Jacobi polynomials, Wigner functions, and generalized spherical functions are closely
related special functions which were introduced in classical analysis, the quantum
theory of angular momentum, and the theory of representations of the rotation group,
respectively (Szegő  1959; Wigner 1959; Gelfand et al. 1963).  Because differences in
notational conventions in various publications may lead to confusion, we present in
this appendix a short consistent summary of the main properties of these functions.

Wigner d-functions are defined as
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where  s, m, and n are integers, ,0 πϑ ≤≤  and the sum is taken over all integer values
of k that lead to non-negative factorials. Thus the summation index runs from =mink
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which is equivalent to requiring that 0≥s  and ., snms ≤≤−   Making the substitu-
tions ,knsk −−→  ,kmsk −+→  and ,knmk +−→  respectively, we derive the
following alternative expressions:
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Equations (B.1)–(B.4) imply that the d-functions are real and have the following
symmetry properties:
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where mnδ  is the Kronecker delta:
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Substituting Eq. (B.8) in Eq. (B.1) and modifying the resulting formula, we obtain
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Finally, recalling the Leibniz rule,
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and applying it to ,)1()( msxxf ++= ,)1()( msxxg −−=  and ,nsN −=  we can rewrite
Eq. (B.9) in the form
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The Jacobi polynomial of degree q is given by Eq. (4.3.1) of Szegő (1959):
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where q is a non-negative integer and 1−>a  and 1−>b  are real.  Comparing Eq.
(B.12) with Eq. (B.13), we obtain the following expression of the Wigner d-functions
in terms of the Jacobi polynomials for |:|mn ≥
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where ,  ,  , nsqmnbmna −=+=−=  and .1=mnξ   The condition ||mn ≥  ensures
that 0≥a  and ,0≥b  thereby preventing singularities for .1±=x  Using the symme-
try relations of Eq. (B.5), it is straightforward to show that Eq. (B.14) can be used for
arbitrary m and n, provided that
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The orthogonality property of the Jacobi polynomials (Eq. (4.3.3) of Szegő 1959)
and Eqs. (B.14)–(B.16) lead to the following orthogonality property of the d-
functions:
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The completeness property of the Jacobi polynomials (Szegő 1959) and Eqs. (B.14)
and (B.17) imply that functions )(2

1 ϑs
mnds +  with �,1, minmin += sss  form a com-
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then there exists a unique set of coefficients sη  )( minss ≥  such that the series expan-
sion
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holds in the following sense:
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Conversely, if a real-valued function )(ϑf  on ],0[ π  admits the expansion of Eq.
(B.19) in the sense of Eq. (B.20), then it is square integrable on ],0[ π  and the expan-
sion coefficients are given by
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The latter formula follows directly from Eqs. (B.19) and (B.17).
Using Eq. (4.5.1) of Szegő (1959) and Eq. (B.14), we obtain the following recur-

rence relation for the Wigner d-functions:
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The simplest way to derive this formula is to consider first the case |,|mn ≥  which
corresponds to , ,  , nsqmnbmna −=+=−=  and then to use the symmetry rela-
tions of Eq. (B.5) in order to verify that Eq. (B.22) is correct for arbitrary m and n.
The initial values are given by
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where mnξ  is given by Eq. (B.16).  Equation (B.24) follows directly from Eq. (B.12)
if |,|mn ≥  and it is extended to arbitrary m and n using Eq. (B.5).  From Eq. (B.12),
we easily derive
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Alternatively, we have from Eq. (4.5.5) of Szegő (1959) and Eq. (B.22)
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The Wigner d-functions with 0=m  and 0=n  are equivalent to the usual Legen-
dre polynomials (cf. Eqs. (B.12) and (A.3)):
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For ,0=n  we obtain
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where )(xPm
s  are associated Legendre functions defined by Eq. (A.3). Equations

(B.22) and (B.28) give a simple recurrence relation for the associated Legendre func-
tions:
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Despite its simplicity, the use of this relation in computer calculations for large s and
||m  results in overflows, whereas the original recurrence relation for the functions

)(0 ϑs
md  remains stable and accurate.  Furthermore, the functions )(0 ϑs

md  have simpler
symmetry properties than the ).(xPm

s  It is, therefore, advisable to use the d-functions
instead of the associated Legendre functions from both the analytical and the numeri-
cal standpoint.

The generalized spherical functions )(xPs
mn  are complex-valued functions related

to the Wigner d-functions by (Gelfand et al. 1963; Hovenier and van der Mee 1983)
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Using Eqs. (B.5)–(B.7), we easily derive
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The corresponding orthogonality and normalization condition follows directly from
Eq. (B.17):
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It is straightforward to show that the generalized spherical functions form a com-
plete set of complex functions on the interval ].1,1[ +−∈x   This means that any com-
plex-valued function ),(xf  defined and square-integrable on the interval ∈x

],1,1[ +−  can be uniquely expanded in the functions )(xPs
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then there exists a unique set of coefficients sη  )( minss ≥  such that
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Conversely, if a complex-valued function )(xf  on ]1,1[ +−  admits the expansion
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η
∞

=

=  (B.36)

in the sense of Eq. (B.35), then it is square integrable on ]1,1[ +−  and the expansion
coefficients are given by
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2
1 xPxfxs s
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+
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(cf. Eqs. (B.33) and (B.36)).
The Wigner D-functions are defined as

,e)(e),,( ii γα βγβα mn
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mn
mm dD ′−

′
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′ =  (B.38)

where

.20     ,0     ,20 πγπβπα <≤≤≤<≤  (B.39)

If the sets of Euler angles ),,( 111 γβα  and ),,( 222 γβα  (Section 2.4) describe two
consecutive rotations of a coordinate system and the set ),,( γβα  describes the re-
sulting rotation, then the addition theorem for the D-functions reads

),,(),,(),,( 222111 γβαγβαγβα n
mm

n
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n
mm DDD ′′′′′

−=′′

′ =  (B.40)

(see Eq. (2) in Section 4.7 of Varshalovich et al. 1988).  A direct consequence of the
addition theorem is the unitarity condition
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mm
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nm
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==−−− δαβγγβα )0,0,0(),,(),,(  (B.41)

(cf. Eq. (B.6)).
Using Eq. (B.40), we can derive the addition theorem for the Wigner d-functions.

Consider the geometry shown in Fig. B.1, where the angles ,1ϑ ,2ϑ ,12 ϕϕ − ,1σ ,2σ
and Θ  are non-negative and are related by

),cos(sinsincoscoscos 121212 ϕϕϑϑϑϑΘ −+=  (B.42)

,
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coscoscoscos
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12
1 Θϑ

Θϑϑσ −=  (B.43)

Θϑ
Θϑϑσ

sinsin
coscoscoscos

2

21
2

−=  (B.44)

(cf. Eqs. (4.17)–(4.19)).  The reference frame formed by the unit vectors )ˆ,ˆ,ˆ( 111 ϕϑn

can be transformed into the reference frame formed by the unit vectors )ˆ,ˆ,ˆ( 222 ϕϑn
in two ways: (i) via a single rotation through Euler angles ),,,( 21 σΘσπ −−  and (ii)
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via two consecutive rotations through Euler angles ), ,0( 121 ϕϕϑ −−  and ).0,,0( 2ϑ
We, therefore, derive from Eqs. (B.38) and (B.40)
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Consider two special cases of Eq. (B.45). If 012 =−ϕϕ  and 21 ϑϑ ≥  then ,01 =σ
,2 πσ =  and ,21 ϑϑΘ −=  and we obtain
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In particular, when ,21 ϑϑ =  Eqs. (B.6) and (B.46) render the unitarity condition for
the d-functions:
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This formula can also be derived directly from the unitarity condition for the D-
functions, Eq. (B.41), by substituting .0== γα   If ,12 πϕϕ =−  then 021 == σσ

1σ

2σ

y

x

z

2n̂

1n̂
Θ

2

2
1

2

12 ϕϕ −

ϑ̂

ϕ̂

1ϕ̂

1ϑ̂

ϑ

ϑ

Figure B.1.  Illustration of the addition theorem for Wigner d-functions.
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and ,21 ϑϑΘ +=  and we have
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The product of two D-functions can be expanded in the so-called Clebsch–Gordan
series (Eq. (1) of Section 4.6 of Varshalovich et al. 1988):
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where the nm
mnmnC

2211   are Clebsch–Gordan coefficients (Appendix D). Substituting =α
0=γ  yields
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Further reading

Detailed accounts of Jacobi polynomials, Wigner d-functions, and generalized spheri-
cal functions are given in Szegő (1959), Gelfand et al. (1963), Vilenkin (1968), Bie-
denharn and Louck (1981), Varshalovich et al. (1988), Brink and Satchler (1993),
Rose (1995), and Edmonds (1996).  Our definition of the d-functions is consistent
with that of Biedenharn and Louck (1981), Hovenier and van der Mee (1983), Var-
shalovich et al. (1988), Brink and Satchler (1993), and Rose (1995).  Vilenkin (1968)
uses functions )(xPs

mn  related to the Wigner d-functions by ).(i)( ϑs
mn

mns
mn dxP −=

Edmonds (1996) uses a function ),()( ϑs
mnd  which is related to )(ϑs

mnd  by )()( ϑs
mnd

= ).()1( ϑs
mn

nm d+−
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Appendix C

Scalar and vector spherical wave functions

Real-valued spherical Bessel functions of the first kind,
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d
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and of the second kind,
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as well as their complex-valued combinations such as Hankel functions of the first
kind,

),(i)()()1( xyxjxh nnn +=     (C.1)

and of the second kind,

),(i)()()2( xyxjxh nnn −=    (C.2)

are solutions of the same differential equation,
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where n is an integer (e.g., Abramowitz and Stegun 1964).  Taking into account that
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we find that

nmnPkrhkr mm
nnmn ±±±===  ..., ,2 ,1 ,0      ..., ,2 ,1 ,0      ,e )(cos)(),,( i)1( ϕϑϕϑψ

(C.5)
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is a solution of the scalar Helmholtz equation

,0),,()( 22 =+∇ ϕϑψ krk mn    (C.6)

where, in spherical coordinates,
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Since
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and
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the functions ),,( ϕϑψ krmn  behave as outgoing scalar spherical waves at infinity and
diverge at the origin.  The functions

nmnPkrjkr mm
nnmn ±±±===  ..., ,2 ,1 ,0     ...,,2 ,1 ,0     ,e)(cos)(),,(Rg i ϕϑϕϑψ

(C.9)

also satisfy the Helmholtz equation but, unlike ),,,( ϕϑψ krmn  are regular (finite) at
the origin, owing to

.
!)!12(

)()(
0 +

=
→ n

krkrj
n

kr
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Since numerical computation of the associated Legendre functions having large n and
||m  is problematic (see Appendix B), it is useful to rewrite Eqs. (C.5) and (C.9) in

terms of Wigner d-functions:
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(cf. Eqs. (B.28) and (B.5)), where we have used a compact way to write two formulas
(for mnψ  and )Rg mnψ as a single equation.

The functions ),,( ϕϑψ krmn  and ),,(Rg ϕϑψ krmn  are called scalar spherical
wave functions and form a complete set of expansion functions that can be used to
represent any time-harmonic scalar wave.  Furthermore, they can be used to create
vector spherical wave functions suitable for expanding time-harmonic vector fields.
According to Eq. (1.17), the electric field in a linear, isotropic, homogeneous medium
is divergence-free:

.0)( =⋅∇ rE  (C.11)



Scattering, Absorption, and Emission of Light by Small Particles372

Therefore, it follows from Eqs. (2.3) and (2.4) and the vector identity
)()]([)( 2 rarara ∇−⋅∇∇=×∇×∇  (C.12)

that )(rE  must satisfy the vector Helmholtz equation

.0)()(  22 =+∇ rErE k  (C.13)

Obviously, vector functions used to expand )(rE  must also be divergence-free and
must satisfy the vector Helmholtz equation.  It can be shown (Stratton 1941; Morse
and Feshbach 1953) that two sets of vector functions that meet these criteria are as
follows:
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where
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In Eqs. (C.19) and (C.20),
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It is straightforward to verify that another class of solutions of the vector Helmholtz
equation
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is the set of so-called longitudinal vector spherical wave functions
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These functions are not divergence-free. It is evident that the vector spherical har-
monics ),,( ϕϑmnB  ),,( ϕϑmnC  and ),( ϕϑmnP  are mutually orthogonal:

.0),(),(),(),(),(),( =⋅=⋅=⋅ ϕϑϕϑϕϑϕϑϕϑϕϑ mnmnmnmnmnmn PCPBCB  (C.26)

Furthermore, M and RgM are perpendicular to N, RgN, L, RgL, and the position
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vector r. Recalling the symmetry relation (B.5), we derive the following symmetry
property of the vector spherical harmonics:
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and analogous relations hold for ),( ϕϑmnC  and ).,( ϕϑmnP  The regular vector
spherical wave functions obey a similar symmetry relation:
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and analogous relations again hold for RgN and RgL.
As follows from Eqs. (C.14), (C.15), and (C.24), the functions RgM, RgN, and

RgL are regular at the origin ).0( =r  On the other hand, using Eq. (C.8) and the for-
mula
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we find that at infinity, the functions M and N behave as outgoing transverse vector
spherical waves:
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whereas L behaves as an outgoing longitudinal vector spherical wave:
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The vector spherical wave functions defined by Eqs. (C.14), (C.15), and (C.24) and
the vector spherical harmonics defined by Eqs. (C.16)–(C.18) are identical to those
used by Tsang et al. (1985, 2000) and are directly related to the functions ,3,1

mnσM
,3,1

mnσN  ,3,1
mnσL  ,σ

mnB  ,σ
mnC  and σ

mnP  ),,( oe=σ  where e and o stand for even and odd,
introduced by Morse and Feshbach (1953).  Taking into account that the definition of
associated Legendre functions on p. 1325 of Morse and Feshbach (1953) lacks the
factor m)1(−  (cf. Eq. (A.3)) and using their Eqs. (13.3.67)–(13.3.69) as well as their
table of vector spherical harmonics on pp. 1898 and 1899, we find for 0≥m
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The equations on p. 1900 of Morse and Feshbach (1953) and Eqs. (C.33)–(C.35) yield
the following orthogonality relations for the vector spherical harmonics:
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Using Eqs. (C.42)–(C.50), we can rewrite the series expansion of the dyadic
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 on p. 1866 of Morse and Feshbach (1953) as follows (Tsang et al. 1985, 2000):
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The expansion of the plane electromagnetic wave
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,0ˆ          ,e)( 0
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in vector spherical wave functions is obtained by taking the dot product of 0E  and
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where
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and we have taken into account that mna  and mnb  vanish for .0=n  The free space
dyadic Green’s function given by
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(cf. Eqs. (2.13) and (2.15)) can also be expressed in terms of vector spherical wave
functions:

�
�

�

�
�

�

�

>′′′′⊗+
′′′⊗

′>′′′⊗+
′′′⊗

−=′

−

−

−

−

−=

∞

=

,for      ),,(),,(Rg
),,(),,(Rg

,for     ),,(Rg),,(
),,(Rg),,(

)1(i),(
1

rrrkkr
rkkr

rrrkkr
rkkr

kG

mnmn

mnmn

mnmn

mnmn

m
n

nmn
ϕϑϕϑ

ϕϑϕϑ

ϕϑϕϑ
ϕϑϕϑ

NN
MM

NN
MM

rr
�

 (C.61)

where rr ′≠  (Tsang et al. 1985, p. 183).
Let ),( 11 ϕϑ  and ),( 22 ϕϑ  be the spherical angles of the same position vector r in

coordinate systems 1 and 2, respectively.  Both coordinate systems have the same
origin.  Coordinate system 2 is obtained by rotating coordinate system 1 though Euler
angles ),,( γβα  (Section 2.4). From Eq. (1) of Section 5.2 and Eq. (1) of Section 5.5
of Varshalovich et al. (1988) and Eqs. (C.5) and (C.9) above we have
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where
γα βγβα mn

mm
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mm dD ii e)(e),,( −
′

′−
′ =  (C.63)

are Wigner D-functions and )(βn
mmd ′  are Wigner d-functions (Appendix B).  Substi-

tuting Eq. (C.62) in Eqs. (C.14) and (C.15) yields
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and analogously for N and RgN. Conversely,
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Consider now coordinate systems 1 and 2 having the same spatial orientation and
denote by 12r  the vector connecting the origin of coordinate system 1 with the origin
of coordinate system 2 (cf. Fig. 5.2).  The translation addition theorem allows one to
expand the vector spherical wave functions centered at the origin of coordinate sys-
tem 1 in terms of the vector spherical wave functions centered at the origin of coordi-
nate system 2 (Tsang et al. 1985; Boström et al. 1991). Specifically, if vectors ,1r  ,2r
and 12r  form a triangle such that 2121 rrr +=  (Fig. 5.2) and ),,,( 111 ϕϑr  ),,,( 222 ϕϑr
and ),,( 121212 ϕϑr  are their respective spherical coordinates, then
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where
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are translation coefficients.  Here
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and the coefficients
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are Wigner 3j symbols (Appendix D).  As usual, the formulas for mnAµνRg  and

mnBµνRg  are obtained by replacing )1(
ph  by pj  in Eqs. (C.69) and (C.70).  Efficient

numerical computation of the translation coefficients ,mnAµν ,mnBµν ,Rg mnAµν  and

mnBµνRg  is discussed by Fuller and Mackowski (2000).
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Appendix D

Clebsch–Gordan coefficients and Wigner 3j symbols

The real-valued coefficients appearing in the Clebsch–Gordan expansion, Eq. (B.49),
are defined as an algebraic sum (Varshalovich et al. 1988; Rose 1995):

nm
mnmnC

2211  

21

21

212121
, )!1(

)!()!()!(
21 �

�

�
�
�

�

+++
++−+−−+= + nnn

nnnnnnnnn
mmmδ

21
22221111 )]12()!()!()!()!()!()![( +−+−+−+× nmnmnmnmnmnmn

,
)!()!()!()!()!(!

)1(
2112221121 pmnnpmnnpmnpmnpnnnp

p

p
+−−++−−+−−−−+

−×

(D.1)

where

● ,1n  ,2n  and n  are non-negative integers or half-integers;
● ,1m  ,2m  and m  are integers or half-integers;
● ,|| 11 nm ≤ ,|| 22 nm ≤  and ;|| nm ≤
● ,11 nm +  ,22 nm +  ,nm +  and nnn ++ 21  are non-negative integers.

The Clebsch–Gordan coefficients are nonzero only when
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and
.21 mmm +=   (D.3)

The so-called unitarity relations for the Clebsch–Gordan coefficients read as
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The Clebsch–Gordan coefficients have the following symmetry properties:
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The so-called Wigner 3j symbols are defined in terms of the Clebsch–Gordan coeffi-
cients as
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Conversely,
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The symmetry properties of the 3j symbols follow from Eqs. (D.6)–(D.9) and are
simpler than those for the Clebsch–Gordan coefficients:

�
�
�

�
�
�
�

�
=��

�

�
�
�
�

�
=��

�

�
�
�
�

�

21

21

12

12

21

21

mmm
nnn

mmm
nnn

mmm
nnn

�
�
�

�
�
�
�

�
−=��

�

�
�
�
�

�
−= ++++

mmm
nnn

mmm
nnn nnnnnn

12

12

21

21
2121 )1()1(

,)1(
12

12
21

�
�
�

�
�
�
�

�
−= ++

mmm
nnnnnn (D.10)

.)1(
21

21

21

21
21

�
�
�

�
�
�
�

�

−−−
−=��

�

�
�
�
�

� ++

mmm
nnn

mmm
nnn nnn (D.11)

The numerical computation of the Clebsch–Gordan coefficients is based on the
following formulas, which are either listed by Varshalovich et al. (1988) or can be
easily derived from equations therein (Mishchenko 1991a).
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● For ,minNn =′  the following four particular cases must be considered.
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(2)  For |||| 1 mnn ′≥−  and ,1nn <  we use the symmetry relation (cf. Eq. (D.6))
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along with Eq. (D.17).

(3)  For |||| 1 mnn ′<−  and ,0≥′m
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(4)  For |||| 1 mnn ′<−  and ,0<′m  we use the formula (cf. Eq. (D.7))
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along with Eq. (D.19).
We have found that the numerical scheme based on the upward recursion (D.13)

produces stable results only for n′  smaller than approximately 60 if double-precision
(REAL*8) floating-point FORTRAN variables are used and smaller than approxi-
mately 105 if the scheme is implemented using extended-precision (REAL*16) vari-
ables.  The instability occurs in those cases when the use of the upward recursion
causes n′  to reach what Schulten and Gordon (1975) call the classical domain of
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-n′ values centered at ,2)( maxmin NNNn +=≈′  where ,1max nnN +=  and then the
non-classical domain with .Nn �′   Clebsch–Gordan coefficients first increase in ab-
solute value with increasing ,n′  then oscillate with a slowly varying amplitude in the
classical domain, and finally rapidly decay in absolute value as n′  reaches the non-
classical domain.  This behavior results in catastrophic loss of numerical accuracy in
the classical domain followed by overflows in the non-classical domain.

To stabilize the computation of the Clebsch–Gordan coefficients, we have imple-
mented a modified version of the procedure proposed by Schulten and Gordon
(1975).  Specifically, the upward recursion of Eq. (13) is used only for ,Nn ≤′
whereas the Clebsch–Gordan coefficients with Nn >′  are computed using the down-
ward analog of Eq. (13),
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supplemented by the initial values
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Since the two-directional recursion scheme always works towards the center of the
classical domain ),( Nn ≅′  it produces highly accurate and stable results.  We have
found that it works well for n′  exceeding 150 even when the numerical procedure is
implemented using double-precision variables (Wielaard et al. 1997).

Equations (D.17), (D.19), and (D.26) involve ratios of products of several factori-
als. Although these ratios are finite numbers with quite limited values, the factorials
themselves can cause computer overflows in actual computer calculations.  In order to
avoid overflows, a useful approach is to store an array of natural logarithms of facto-
rials of integers ranging from 0 to an appropriate maximal value.  Then the ratio of
two factorials is computed as )].!ln()!exp[ln(!! nmnm −=   The logarithms of the
factorials should be computed using the upward recursion +=+ )!ln(])!1ln[( mm

).1ln( +m
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Appendix E

Système International units

The system of physical units adopted in this book is the internationally accepted form
of the metric system known as the Système International (SI).  The SI is formed by
base units, supplementary units, and units derived from the base units.  The table be-
low lists only those derived SI units that are used in this book.

Quantity Unit Symbol Definition

Base units
   length meter m

time second s
mass kilogram kg
electric current ampere A
temperature kelvin K
amount of substance mole mol

Supplementary units
plane angle radian rad
solid angle steradian sr

Derived units
energy joule J 22 smkgmN −=
electric charge coulomb C sA 
electric potential volt V 1321 A s mkgAW −−− =
electric capacitance farad F 24211 A s mkgVC −−− =
electric resistance ohm Ω 2321 A s mkgAV −−− =
magnetic flux weber Wb 122 A smkgsV −−=
inductance henry H 2221 A s mkgAWb −−− =
frequency hertz Hz 1s−

power watt W 321 smkgsJ −− =
 force newton N 2s m kg −
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Abbreviations and symbols

The list includes only those abbreviations and symbols that are encountered in two or
more sections or are used to denote two or more quantities.

Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

English abbreviations and symbols
a semi-axis of an ellipsoid [m] 3.2
a equivalent-sphere radius [m] 3.2
a radius of a sphere [m] 3.3
a typical particle dimension [m] 5.8.2
a parameter of the gamma size distribution [m] 5.10.1
a horizontal semi-axis of a spheroid [m] 5.11.2
a semi-major particle dimension [m] 7.1
a column vector of expansion coefficients of

the incident electric field [V m–1] 5.1
na Lorenz–Mie coefficients [–] 5.2.2
mna expansion coefficients of the incident electric

field [V m–1] 5.1
)(Θja diagonal elements of the normalized Stokes

scattering matrix [–] 4.10
A 44×  transformation matrix [–] 1.3
A matrix formed by the translation coefficients

mnAµν  [–] 5.2.4

A Mueller matrix of the analyzer [–] 8.1
mnAµν translation coefficients [–] Appendix C

A
�

scattering dyadic [m] 2.2
b semi-axis of an ellipsoid [m] 3.2
b parameter of the gamma size distribution [–] 5.10.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

b vertical (rotational) semi-axis of a spheroid [m] 5.11.2
b column vector of the expansion coefficients

of the incident electric field [V m–1] 5.1
nb Lorenz–Mie coefficients [–] 5.2.2
mnb expansion coefficients of the incident electric

field [V m–1] 5.1
)(Θjb off-diagonal elements of the normalized Stokes

scattering matrix [–] 4.10
B magnetic induction [Wb m–2] 1.1
B 44×  transformation matrix [–] 1.3
B matrix formed by the translation coefficients

mnBµν  [–] 5.2.4

BCGM bi-conjugate gradient method 6.5
mnBµν translation coefficients [–] Appendix C

)(ϑmnB vector angular functions [–] Appendix C
),( ϕϑmnB vector angular functions [–] Appendix C

c speed of light in a vacuum [m s–1] 1.2
c semi-axis of an ellipsoid [m] 3.2

�� Θcos asymmetry parameter [–] 2.8
C circular-polarization amplitude scattering
                     matrix [m] 4.12
CGM conjugate gradient method 6.2

−−+−−+++ CCCC ,,, elements of the circular-polarization amplitude
scattering matrix [m] 4.12

absC absorption cross section [m2] 2.8
extC extinction cross section [m2] 2.8
prC radiation-pressure cross section [m2] 2.9
scaC scattering cross section [m2] 2.8
nm

mnmnC
2211  Clebsch–Gordan coefficients [–] Appendix D

)(ϑmnC vector angular functions [–] Appendix C
),( ϕϑmnC vector angular functions [–] Appendix C

�� absC average absorption cross section per
particle [m2] 3.1

�� bC average backscattering cross section per
particle [m2] 9.5

�� extC average extinction cross section per particle
[m2] 3.1

�� prC average radiation-pressure cross section per
particle [m2] 3.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

�� scaC average scattering cross section per
particle [m2] 3.1

Ωd
d scaC differential scattering cross section [m2] 2.8

nd coefficient [–] Appendix C
)(ϑs

mnd Wigner d-functions [–] Appendix B
D diameter of a circular cylinder [m] 5.11.2
D diameter of the host sphere [m] 10.10
D electric displacement [C m–2] 1.1
D 44×  transformation matrix [–] 1.3
DDA discrete dipole approximation 6.5

)(ϑs
mnD Wigner D-functions [–] Appendix B

e base of natural logarithms [–]
E electric field [V m–1] 1.1
E unit matrix [–] 5.2.3
EBCM extended boundary condition method 5.8.1

ϕϑ EE  , spherical coordinate components of the
electric field vector [V m–1] 1.3

−+ EE , circular components of the electric field
vector [V m–1] 4.12

F radiation force [N] 2.9
F Stokes scattering matrix [m2] Introduction

to Chapter 4
FDM finite-difference method 6.2
FDTDM finite-difference time-domain method 6.3
FEM finite-element method 6.2
FFT fast Fourier transform 6.5
FIEM Fredholm integral equation method 6.5

ijF elements of the Stokes scattering matrix [m2] 4.1

F~ normalized Stokes scattering matrix [–] 4.10
CP~F normalized circular-polarization scattering

matrix [–] 4.12
��F average radiation force per particle [N] 4.6
��F average Stokes scattering matrix per particle

[m2] 4.2
),( rr ′g scalar Green’s function [m–1] 2.1

s
pqg expansion coefficients [–] 4.12

G area of the particle geometrical projection [m2] 2.8
GE Gaussian elimination 6.2
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

GPMM generalized PMM 6.4
G
�

free space dyadic Green’s function [m–1] 2.1
��G average area of the geometrical projection per

particle [m2] 4.6
)1(

nh Hankel functions of the first kind [–] Appendix C
)2(

nh Hankel functions of the second kind [–] Appendix C
H magnetic field [A m–1] 1.1
i 1−  [–] 1.1
I intensity (irradiance) [W m–2] 1.2
I monochromatic specific intensity (radiance)

[W rad–1 s m–2 sr–1] 3.4
I first Stokes parameter [W m–2] 1.3
I 14×  Stokes column vector [W m–2] 1.3
I 14×  monochromatic specific intensity column

vector [W rad–1 s m–2 sr–1] 3.4
Im imaginary part 

2002  , , , IIII − elements of the circular-polarization column
vector [W m–2] 1.3

bI Planck blackbody energy distribution
[W rad–1 s m–2 sr–1] 2.10

bI 14×  blackbody Stokes column vector
[W rad–1 s m–2 sr–1] 2.10

hv  , II first and second elements of the modified
Stokes column vector [W m–2] 1.3

CPI 14×  circular-polarization column vector
[W m–2] 1.3

MSI 14×  modified Stokes column vector [W m–2] 1.3
I
�

identity dyadic [–] 2.1
lj spherical Bessel functions of the first kind [–] Appendix A

J current density [A m–2] 1.1
J 14×  coherency column vector [W m–2] 1.3

SJ surface current density [A m–1] 1.1
IR ikkk += (complex) wave number [m–1] 1.2
IR ikkk += (complex) wave vector [m–1] 1.2

1k wave number in the exterior region [m–1] 2.1
2k wave number in the interior region [m–1] 2.1

L length of a cylinder [m] 5.11.2
CPMS  , , LLL 44×  rotation matrices [–] 1.5

IR immm += (complex) refractive index relative to vacuum
or surrounding medium [–] 1.2, 2.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

M magnetization [A m–1] 1.1
M Mueller matrix of the modulator [–] 8.1
ME-GPMM multiple-expansion GPMM 6.4
MOM method of moments 6.5

mnM vector spherical wave functions [–] Appendix C
)(an size distribution function [m–1] 3.2

0n particle number density [m–3] 3.4
maxn parameter specifying the size of the T matrix [–] 5.8.4
maxn maximal order of Lorenz–Mie coefficients [–] 5.10.1

n̂ unit vector [–] 1.1
incn̂ unit vector in the incidence direction [–] 2.2
scan̂ unit vector in the scattering direction [–] 2.2

N number of particles [–] 3.1
GN number of Gaussian division points in

Eq. (5.202) [–] 5.8.3
mnN vector spherical wave functions [–] Appendix C

p phase function [–] 2.8
)(xp probability density function [dimension is

that of ]1−x 3.2
p column vector of the expansion coefficients

of the scattered electric field [V m–1] 5.1
mnp expansion coefficients of the scattered electric

field [V m–1] 5.1
P degree of (elliptical) polarization [–] 1.6
P electric polarization [C m–2] 1.1
P Mueller matrix of the polarizer [–] 8.1
PMM point-matching method 6.4

CP degree of circular polarization [–] 1.6
LP degree of linear polarization [–] 1.6
QP degree of linear polarization [–] 1.6

)(xPl Legendre polynomials [–] Appendix A
)(xPm

l associated Legendre functions [–] Appendix A
)(xPs

mn generalized spherical functions [–] Appendix B
)(),( xP ba

q Jacobi polynomials [–] Appendix B
)(ϑmnP vector angular functions [–] Appendix C

),( ϕϑmnP vector angular functions [–] Appendix C
q 22×  transformation matrix [–] 4.12
q column vector of the expansion coefficients

of the scattered electric field [V m–1] 5.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

mnq expansion coefficients of the scattered
electric field [V m–1] 5.1

Q second Stokes parameter [W m–2]  1.3
Q second element of the monochromatic specific

intensity column vector [W rad–1 s m–2 sr–1] 3.4
Q Q matrix [–] 5.8.1
Q Mueller matrix of the quarter-wave plate [–] 8.1

absQ efficiency factor for absorption [–] 2.8
bQ backscattering efficiency factor [–] 9.5
extQ efficiency factor for extinction [–] 2.8
prQ efficiency factor for radiation pressure [–] 2.9
scaQ efficiency factor for scattering [–] 2.8

r distance from the origin of a coordinate
system [m] 2.2

r radius of a spherical particle [m] 5.10.1
r radius (position) vector [m] 1.1

0r parameter specifying the size of Chebyshev
and generalized Chebyshev particles [m] 5.11.2, 5.12

21  , rr parameters of the power law and modified
power law  size distributions [m] 5.10.1

12r distance between two coordinate system
origins [m] 2.11

12r distance between the components of a two-
sphere cluster [m] 5.13

cr parameter of the modified gamma size
distribution [m] 5.10.1

effr effective radius of a size distribution [m] 5.10.1
gr parameter of the log normal size distribution

[m] 5.10.1
21  , gg rr parameters of the modified bimodal log normal

size distribution [m] 5.10.1
maxr maximal radius of a size distribution [m] 5.10.1
minr minimal radius of a size distribution [m] 5.10.1
sr surface-equivalent-sphere radius [m] 5.8.4
vr volume-equivalent-sphere radius [m] 5.11.2
>r radius of the smallest sphere circumscribing a

particle [m] 5.1
<r radius of the largest inscribed sphere of a

nonspherical particle [m] 5.8.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

r̂ unit vector in the direction of r [–] 2.2
Re real part
Rg stands for “regular” Appendix C
RH Rayleigh hypothesis 6.4

beR backscatter-to-extinction ratio [–] 9.5
ebR extinction-to-backscatter ratio [–] 9.5

S surface area [m2] 1.1
S Poynting vector [W m–2] 1.1
S amplitude scattering matrix [m] 2.2
S S matrix [–] 5.2.3

ijS elements of the amplitude scattering matrix
[m] 2.2

SIEM surface integral equation method 6.5
SVM separation of variables method 6.1
S
�

scattering tensor [–] 2.3
��S time-averaged Poynting vector [W m–2] 1.1

t time [s] 1.1
t crystal distortion parameter [–] 10.7
t 22×  transformation matrix [–] 2.4
T absolute temperature [K] 2.10
T T matrix [–] 5.1

kl
nmmnT ′′ elements of the T matrix [–] 5.1

)(cosϑnT Chebyshev polynomial of degree n [–] 5.11.2
T
�

dyadic transition operator [m–5] 2.1
MT
�

Maxwell stress tensor [N m–2] 2.9
U third Stokes parameter [W m–2] 1.3
U third element of the monochromatic specific

intensity column vector [W rad–1 s m–2 sr–1] 3.4
v phase velocity [m s–1] 1.2
v velocity vector [m s–1] 1.1

effv effective variance of a size distribution [–] 5.10.1
V volume [m3] 1.1
V fourth Stokes parameter [W m–2] 1.3
V fourth element of the monochromatic specific

Intensity column vector [W rad–1 s m–2 sr–1] 3.4
VIEM volume integral equation method 6.5

EXTV exterior region [m3] 2.1
INTV interior region [m3] 2.1

W power [W] 1.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

x size parameter [–] 5.8.2
ba xx  , size parameters along spheroid semi-axes [m] 5.11.7

effx effective size parameter of a size distribution
[–] 9.2

sx surface-equivalent-sphere size parameter [–] 5.8.4
vx volume-equivalent-sphere size parameter [–] 10.4
ly spherical Bessel functions of the second kind [–] Appendix C

)ˆ(rlmY spherical harmonics [–] Appendix A
Z Stokes phase matrix [m2] 2.6

ijZ elements of the Stokes phase matrix [m2] 2.6
CPZ circular-polarization phase matrix [m2] 2.6
JZ coherency phase matrix [m2] 2.6
MSZ modified Stokes phase matrix [m2] 2.6
Z~ normalized Stokes phase matrix [–] 4.10

CP~Z normalized circular-polarization phase matrix
[–] 4.12

��Z average Stokes phase matrix per particle [m2] 3.1

Greek symbols
α absorption coefficient [m–1] 1.2
α first Euler angle [rad] 2.4
α parameter of the modified gamma size

distribution [–] 5.10.1
α exponent of the modified power law size

distribution [–] 5.10.1
α local incidence angle [rad] 9.4
α 23×  transformation matrix [–] 2.4

s
jα expansion coefficients [–] 4.11

β ellipticity angle of the polarization ellipse [rad] 1.4
β second Euler angle [rad] 2.4
β 33×  transformation matrix [–] 2.4

s
jβ expansion coefficients [–] 4.11

β backscattered fraction for isotropically incident
radiation [–] 10.3

γ third Euler angle [rad] 2.4
γ parameter of the modified gamma size

distribution [–] 5.10.1
γ parameter of the modified bimodal log normal

size distribution [–] 5.10.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

mnγ coefficient [–] Appendix C
mnγ ′ coefficient [–] Appendix C
Γ radiation torque [N m] 2.9

)(δ x Dirac delta function [dimension is that of ]1−x 2.1
)(δ r three-dimensional Dirac delta function [m–3] 2.1
)ˆ(δ n solid-angle Dirac delta function [–] 2.3

Cδ circular backscattering depolarization ratio [–] 10.2
Lδ linear backscattering depolarization ratio [–] 4.9
mnδ Kronecker delta [–] Appendix B
∆ 44×  unit matrix [–] 4.4

3∆ 44×  transformation matrix [–] 2.6
23∆ 44×  transformation matrix [–] 2.6
34∆ 44×  transformation matrix [–] 4.3
CP∆ 44×  transformation matrix [–] 4.12
MS∆ 44×  transformation matrix [–] 2.6

ε electric permittivity [F m–1] 1.1
ε aspect ratio of a nonspherical particle [–] 3.2

0ε electric permittivity of free space [F m–1] 1.1
1ε electric permittivity of the surrounding medium

[F m–1] 2.1
ζ orientation angle of the polarization ellipse

[rad] 1.4
η rotation angle [rad] 1.5
ϑ polar (zenith) angle [rad] 1.3
ϑ̂ unit vector in the ϑ  direction [–] 1.3
Θ scattering angle [rad] 2.8
Κ Stokes extinction matrix [m2] 2.7

ijΚ elements of the Stokes extinction matrix [m2] 2.7
CPΚ circular-polarization extinction matrix [m2] 2.7
eΚ 14×  Stokes emission column vector

[W rad–1 s sr–1] 2.10
JΚ coherency extinction matrix [m2] 2.7
MSΚ modified Stokes extinction matrix [m2] 2.7
��Κ average Stokes extinction matrix per particle

[m2] 3.1
�� eΚ average Stokes emission column vector per

particle [W rad–1 s sr–1] 3.1
λ free-space wavelength [m] 1.2

1λ wavelength in the surrounding medium [m] 3.4
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

µ magnetic permeability [H m–1] 1.1 
0µ magnetic permeability of free space [H m–1] 1.1 

ξ deformation parameter for Chebyshev particles
[–] 5.11.2

mnξ coefficient [–] Appendix B
π pi [–]
ϖ single-scattering albedo [–] 2.8

)(ϑπ n angular functions [–] 5.7
)(ϑπ mn angular functions [–] 5.1

ρ charge density [C m–3] 1.1
ρ phase shift [–] 9.1
ρ phase function ratio [–] 10.2
ρ 22× coherency (density) matrix [W m–2] 1.3

Sρ surface charge density [C m–2] 1.1
σ conductivity [Ω–1 m–1] 1.1
σ surface roughness parameter [–] 10.7

21  ,σσ rotation angles [rad] 4.3
gσ parameter of the log normal size distribution [–] 5.10.1

21  , gg σσ parameters of the modified bimodal log normal
size distribution [–] 5.10.1

�� bσ average radar backscattering cross section per
particle [m2] 9.5

τ optical path length [–] 4.13
τ optical thickness of the host particle [–] 10.10

)(ϑτ n angular functions [–] 5.7
)(ϑτ mn angular functions [–] 5.1

ϕ azimuth angle [rad] 1.3
ϕ̂ unit vector in the ϕ  direction [–] 1.3
χ electric susceptibility [–] 1.1
ω angular frequency [rad s–1] 1.1
Ω solid angle [sr] 2.10

Miscellaneous symbols
∗x complex-conjugate value of x 1.1
��x average of x 1.1
|| x absolute value of x
ba ⋅ dot (scalar) product of vectors a and b
ba × vector product of vectors a and b
ba ⊗ dyadic product of vectors a and b 2.1
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Abbreviation Introduced
or symbol Definition and dimension in SI units in Section

�
�
�

�
�
�
�

�

rqp
nml

Wigner 3j symbols Appendix D

�
�
�

�

�

�
�
�

�

�

dc

ba

�

���

�

matrix

1−A inverse of A 1.3
TA transpose of A 1.4

diag[a, b] �
�

�
�
�

�

b
a
0

0

TS
�

transpose of S
�

2.3
∇ gradient [m–1]
∈ element of
∪  union of sets
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Index

absorption, 3, 11, 58
absorption coefficient, 15
aggregated particles, see particles, aggregated
Alexander’s dark band, 259
amplitude scattering matrix, 37–8, 118

backscattering, 94
backscattering theorem for, 41–2
circular-polarization, 106

for spherically symmetric particles,
141

for rotationally symmetric particles, 183
for spherically symmetric particles,

139–40
forward-scattering, 91–3
reciprocity relation for, 41, 84
rotation transformation law for, 46
symmetry properties of, 84–5
translation transformation law for, 66–7

angle
azimuth, 16     
polar, 16
scattering, 60, 83, 87
zenith, see angle, polar

angular frequency, 5, 10
anomalous diffraction approximation, see

approximation, anomalous diffraction
approximation

anomalous diffraction, 210
Born, see approximation, Rayleigh–Gans

effective-medium, 350
eikonal, 210
geometrical optics, 210–21, 258–60,

264–5, 320–5
high-energy, 210
Kirchhoff, 212, 220
ray optics, see approximation,

geometrical optics
ray-tracing, see approximation,
   geometrical optics
Rayleigh, 206–9, 264
Rayleigh–Debye, see approximation,

Rayleigh–Gans
Rayleigh–Gans, 35, 209–10, 256, 264,

271
Rayleigh–Gans–Stevenson, 207
scalar, 109
single-scattering, 6
Wentzel–Kramers–Brillouin, 210

aspect ratio, 73, 192, 290
asymmetry parameter, 60, 96, 101, 105, 295,

299–300, 304, 309, 327, 340, 344,
350–1

for spherically symmetric particles, 142,
239, 242–3, 245, 256–7

averaging
ensemble, 72–3, 159–60, 334–7
orientation, 72–3, 172–3, 334–7, 338,

344
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analytical, 121, 127, 131, 134, 186,
199, 201

effects of, 279–82
numerical, 134, 137, 186

shape, 72–3, 334–7
size, 72–3, 159–61, 172–3, 335

effects of, 250–2, 279–82, 341
axis ratio for spheroids, 171
azimuth angle, 16

backscatter-to-extinction ratio, 267, 270, 292,
295, 303, 308

backscattered fraction, 299–300, 305
backscattering, 7, 94–5, 99, 267–71, 320–1
backscattering depolarization ratio

circular, 100, 228, 295–6, 307, 310, 339,
342, 352, 356–8

linear, 100, 228, 295–7, 307, 309, 339,
342, 352–8

backscattering theorem, 41–2, 54
benchmark results, 180–2, 189, 203–4
Bessel functions, spherical, 167–9, 360, 370

asymptotic form for, 360
bispheres, see clusters, two-sphere
blackbody

energy distribution, 63
Stokes column vector, 65, 98

blue moon, 250
Born approximation, see approximation,

Rayleigh–Gans
boundary conditions, 5, 7, 9–10, 78, 113,

145, 191, 192, 196
absorbing, 194, 195

boundary-matching method, 196–7
Brewster angle, 272
bulk matter, 32

optical constants of, 32

charge density, 9
surface, 10

Chebyshev particles, 171–2, 182, 185, 319
generalized, 182, 185

cirrus clouds, see ice clouds
Clebsch–Gordan coefficients, 128, 131, 141,

369, 380–3
Clebsch–Gordan expansion, 128, 141, 368
clusters, 5, 80, 154

of spheres, 156, 190, 201, 337–47

of spheroids, 201
two-sphere, 74–6, 80–1, 186–9, 203–4,

337–45, 357–8
coherency matrix, 17

additivity of, 28
coherency column vector, 17, 50, 54–5
coherent backscattering, 7, 42, 79–82, 220
completely polarized light, see fully polarized

light
composite particles, 154–8
computer codes, 158–90, 193, 195, 199, 205,

214
condensation trails (contrails), 353–5
conductivity, 9
constitutive relations, 9, 117
continuity equation, 9
coordinate system

Cartesian, 15
device, 130
laboratory, 42–6, 119, 130
particle, 42–6, 119
right-handed, 15–6
spherical, 15–6

coupled dipole method, see discrete dipole
approximation

cross section
absorption, 57–8, 227–8, 254–5, 294,

299, 302, 340, 343
average, 71, 97
backscattering, 267
differential scattering, 59
extinction, 57–9, 119, 227, 294–5, 299,

300, 339–40, 343
average, 70, 93
for randomly oriented particles,

132–3
for spherically symmetric particles,

140
geometrical, 59
radar backscattering, 267
radiation-pressure, 62

average, 71, 97
scattering, 57–8, 119, 294, 299, 301, 340,

343
average, 69, 71, 96
for macroscopically isotropic and

mirror-symmetric media, 95–6
for randomly oriented particles,
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138–9
for spherically symmetric particles,

140
current density, 9

surface, 10
cylinders

circular, 171–2, 185, 203–4, 210, 213,
215–20, 299–310

with extreme aspect ratios, 221–2,
315–8

hexagonal, 146, 210, 213, 320–2, 350

delta-function transmission, 218–20
density matrix, see coherency matrix
depolarization, 54, 100, 295–7, 307, 339

in remote sensing, 352–6   
dichroism, 3, 56, 78
differential equation methods, 191
diffraction, see Fraunhofer diffraction
Dirac delta function

solid-angle, 41
three-dimensional, 33

direct scattering problem, 237, 351
discrete dipole approximation, 198–9, 203,

205
discretized Mie formalism, 205, 222
dyad, 34
dyadic, 33–34
dyadic transition operator, 35

integral equation for, 35

effective-medium approximation, 350
effective radius, 161, 285–7
effective size parameter, 250, 286
effective variance, 161, 251–2, 285–7
efficiency factor

for absorption, 59, 97, 254–5
for backscattering, 267, 269, 292, 295
for extinction, 59, 97, 238–47, 253–4,

309, 312
for radiation pressure, 62, 97, 257–8,

309, 312
for scattering, 59, 97, 253–4

eikonal approximation, 210
electric displacement, 9
electric field, 9
electric permittivity, 9
electric polarization, 9

electric susceptibility, 9
electromagnetic wave, 3, 12

circular components of, 105
emission column vector, Stokes, 63–5

average, 71, 78, 98
emission, thermal, 3, 63–6, 97–8
energy conservation law, 11, 37, 122
ensemble averaging, 72–3, 159–60, 334–7
equilibrium, thermal, 63–5
Euler angles, 42, 119–20, 367
Ewald–Oseen extinction theorem, 115
extended boundary condition, 144
extended boundary condition  method, 115,

142–7, 196
convergence of, 150–3, 170–1, 178–80
for rotationally symmetric particles,

148–50
iterative, 152, 205
multiple-multipole, 152

extinction, 3, 58, 78
extinction matrix

circular-polarization, 56
reciprocity relation for, 56

coherency, 55
reciprocity relation for, 56

modified Stokes, 56
reciprocity relation for, 56

Stokes, 55–6
average, 70, 78
for axially oriented particles, 127–32
for macroscopically isotropic and

mirror-symmetric media, 91–3
reciprocity relation for, 56, 71
symmetry property of, 56

extinction-to-backscatter ratio, 267

far-field zone, 5, 35–8
finite-difference method, 194, 205
finite-difference time-domain method, 195–6,

205, 321
finite-element method, 193–5, 205
Fraunhofer diffraction, 212–3, 220, 227,

258–9
Fredholm integral equation method, 200, 205
fully polarized light, 27, 54

Gaussian random spheres, 328
generalized spherical functions, 103, 107,
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366–7
geometrical optics approximation, 210–21,

258–60, 264–5, 320–5
glory, 260, 264
Green’s function

dyadic, free space, 33–6, 377
scalar, 34–6

Green’s vector theorem, 142

halos, 320–2, 350
Hankel functions, 169, 370
Helmholtz equation

scalar, 371
vector, 193, 205, 372–3

homogeneous wave, 13
Huygens’ principle, 115
hydrometeors

nonspherical, 100, 127, 352
partially aligned, 100

ice clouds, 321, 322, 352, 354–5, 358
identity dyadic, 33, 36
incident field, 31, 33, 47, 116
independently scattering particles, 6, 74
inhomogeneous wave, 13
integral equation methods, 191, 197–200
intensity of light, 15, 18
interference of light, 7, 58, 79, 343, 344
interference structure, 240, 250–1,

279–82
interstellar dust grains, 100, 127
interstellar polarization, 99, 351
inverse scattering problem, 237, 351
irradiance, see intensity 
irregular particles, 322–34

Jacobi polynomials, 364

Kirchhoff approximation, 212, 220
Koch fractals, 325, 327

random, 325–8
Kronecker delta, 363

Legendre functions, associated, 140, 360, 366,
374

Legendre polynomials, 360, 365
levitation

electrostatic, 273, 358

optical, 60, 228, 273
lidars, 228, 352, 355
Lippmann–Schwinger equations, 35
Lorenz–Mie

coefficients, 122, 153–4
computer code, 158–65, 238
identities, 100, 352
scattering matrix, 99
theory, 99, 114, 115, 139–42, 238

magnetic field, 9
magnetic induction, 9
magnetic permeability, 9
magnetization, 9
Maxwell equations, 5, 8–9, 32, 77, 78, 113,

191, 195
linearity of, 37, 39, 117
plane-wave solution of, 12–15

Maxwell stress tensor, 60
measurement techniques for scattering,

224–33
using microwaves, 224, 230–3
using visible and infrared light, 113,

224–30, 273–4, 329–34, 345,
351–8

two-dimensional angular, 230, 351–2
meridional plane, 16, 23, 38, 83, 88
method of moments, 198–9, 205
microwave analog technique, 113, 147,

230–3
microwave measurement techniques, 224,

230–3
mineral particles, 329–39
monochromatic light, 3, 12
monodisperse particles, 165, 177, 238–50,

279–82, 335, 341

natural light, see unpolarized light
near-field effects, 80
nonsphericity, effects of, 99–100, 279–82
null-field method, 115

with discrete sources, 152

optical equivalence principle, 18, 28
optical theorem, 49, 56, 58, 207
orientation angle of the polarization ellipse,

20
orientation averaging, see averaging,
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orientation
orientation distribution, 72–3

axially symmetric, 73, 127
random, 73

orientation of the scattering object, see
particle orientation

outgoing wave, 34, 36, 371, 374

parallel beam of light, 3, 12
particle characterization, optical, 7, 82,

229–30, 249, 273–8, 350–8
particle collection, 5, 68

tenuous, 7
particle orientation, 42

effects of, 99–100, 279–82
particle shapes, 171–2, 182, 283, 322, 325,

330
particles

absorbing, 124, 216
aggregated, 154–8
Chebyshev, 171–2, 182, 185, 319

generalized, 182, 185
clay, 329–32
composite, 154–8
dust, 355–6
feldspar, 329–31
fly ash, 345, 348
independently scattering, 6, 74
irregular, 322–34
loess, 329–31, 335
mineral, 329–39
monodisperse, 165, 177, 238–50,

279–82, 335, 341
nonabsorbing, 122–5, 139, 152
polydisperse, 158, 165, 250–73,

282–310, 345, 354, 356
polyhedral, 146, 213, 320–3
quartz, 329–31, 333
randomly and sparsely distributed,

68–71, 75, 77
randomly oriented, 73, 87, 100, 132–9
randomly shaped, 322
rotationally symmetric, 46, 93, 102, 121,

125, 129, 133, 135, 138, 148–50,
165, 169, 171–2, 180

Sahara sand, 329–31, 337
spherical, 98–9, 102, 122, 139–42, 158,

214–6, 238–78

anisotropic, 222
Faraday-active, 221
monodisperse, 238–50
polydisperse, 250–73

stochastically shaped, see particles,
randomly shaped

volcanic, 329–31, 334, 336
with inclusions, 156–7, 201, 213–14,

347–51
with rough surfaces, 325–6, 328

perturbation theories, 221
phase, 13, 18, 20
phase function, 59–60, 101

for irregular particles, 322–8
for monodisperse spherical particles, 248
for polydisperse spherical particles,

258–67
for randomly oriented circular cylinders,

301–2, 306, 315–6
for randomly oriented spheroids, 286–91,

297, 309
normalization condition for, 60, 101
Rayleigh, 208–9, 264
Rayleigh–Gans, 264

phase matrix, 49–54
circular-polarization, 52, 106

average, 107
normalized, 106–7
reciprocity relation for, 53

coherency, 50–1
reciprocity relation for, 53

modified Stokes, 52
reciprocity relation for, 53

normalized Stokes, 100–2
Fourier decomposition in azimuth

for, 105
symmetry properties of, 102

Stokes, 51–2, 83
average, 70, 72, 78
backscattering, 54
expression in terms of the scattering

matrix, 88–91
for macroscopically isotropic and

mirror-symmetric media, 88–91
inequalities for, 52, 71
reciprocity relation for, 52–3, 71
symmetry relations for, 90–1

phase velocity, 13, 14
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photon correlation spectroscopy, 7
physical optics approximation, 220
plane wave, 3, 12, 16–7, 37, 116

expansion in spherical waves, 360–1
expansion in vector spherical wave

functions, 117, 376–7
point matching method, 196–7

generalized, 197, 204
multiple-expansion, 197, 204–5

polar angle, 16
polar stratospheric clouds, 352, 354
polarization, 54

circular, 21, 23, 54
degree of, 28

complete, see polarization, full
degree of, 28
elliptical, 21, 23

degree of, 28, 54
full, 27, 54
left-handed, 20
linear, 21, 23, 54

degree of, 28, 29, 271
natural, 27
right-handed, 20

polarization analyzer, 225
polarization ellipse, 20–4

ellipticity of, 20
orientation of, 20

polarization modulation technique, 226, 228
polarization modulator, 225
polarizer, 225
polydisperse particles, 158, 165, 250–73,

282–310, 345, 354, 356
polyhedral particles, 146, 213, 320–3
position vector, 10
Poynting vector, 11

complex, 12
time-averaged, 12, 14–5, 47, 123–4

probability density function, 72
normalization condition for, 72

quarter-wave plate, 225
quasi-monochromatic light, 5, 26–9, 52, 56,

58, 63, 71, 77

radars, 233, 352
radiance, see specific intensity
radiation condition, 116–7, 194, 199

radiation force, 60–2, 96–7
emission component of, 62, 65, 98

radiation pressure, 60
radiation torque, 62–3

emission component of, 66
radiative transfer equation, 6–7, 76, 78

for macroscopically isotropic and
mirror-symmetric media, 105, 108–9

radius
effective, 161, 285–7
equivalent-sphere, 73, 172
surface-equivalent-sphere, 171–2
volume-equivalent-sphere, 172

radius vector, 10
rainbows, 258–60, 264
randomly and sparsely distributed particles,

68–71, 75, 77
randomly oriented particles, 73, 87, 100,

132–9
randomly shaped particles, 322
ray optics approximation, see approximation,

geometrical optics
ray-tracing approximation, see

approximation, geometrical optics
Rayleigh approximation, 206–9, 264
Rayleigh–Debye approximation, see

approximation, Rayleigh–Gans
Rayleigh–Gans approximation, 35, 209–10,

256, 264, 271
Rayleigh–Gans scattering, 264, 271–3
Rayleigh hypothesis, 117, 146, 196, 221
Rayleigh scattering, 247, 250, 264, 271–3,

309, 310
reciprocity relation, 41, 52–3, 71, 84
reference plane, 24

rotations of, 24–5
refractive index, 5, 14

relative, 33
resonance structure, 241–50, 279–82, 338
resonances, 241–50, 273
ripple structure, 239, 241, 245, 250–1
rotation matrix

for circular-polarization representation,
25–6

for modified Stokes column vector, 25
Stokes, 25

rotationally symmetric particles, 46, 93, 102,
121, 125, 129, 133, 135, 138,
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148–50, 165, 169, 171–2, 180

S matrix, 122–5
unitarity condition for, 124–5

scale invariance rule, 147, 230
scattered field, 3, 31, 33, 36–7, 47, 116–7
scattering, 3

diffuse, 6
dynamic, 7
elastic, 3
electromagnetic, 3
far-field, 5, 35–8, 66–7
forward, 6, 49, 54, 91–4, 99
incoherent, 6, 74
independent, 6, 74, 75

condition for, 74
 multiple, 6, 75, 344

single, 68–71
static, 7

scattering angle, 60, 83, 87
scattering dyadic, 37, 41, 117–8

reciprocity relation for, 41
scattering matrix, circular-polarization,

normalized, 106–7
expansion in generalized spherical

functions, 107–8, 136, 141
symmetry properties of, 107

scattering matrix, Stokes, 83, 85–6, 94
average, 87
effects of nonsphericity on, 99–100
for backward scattering, 94–5
for forward scattering, 93–4
for macroscopically isotropic and

mirror-symmetric media, 87
for randomly oriented particles, 133–7
for rotationally symmetric particles, 93–4
for spherically symmetric particles, 98–9
inequalities for, 87–8
normalized, 100–3

expansion in generalized spherical
functions, 103–5, 136–7, 141, 166,

172–3, 180–1
expansion in Wigner d-functions,

103–5
for clusters of spheres, 341–7
for irregular particles, 323–39
for randomly oriented circular

cylinders, 215–8, 301–7, 315–8

for randomly oriented spheroids, 180,
182, 285–94, 297–8, 309–11,
313–4

for rotationally symmetric particles,
102

for spherically symmetric particles,
102, 140, 160, 167, 229–30,
245–9, 258–67, 271–6

properties of, 101–3
symmetries of, 85–6

scattering medium
macroscopically isotropic, 87
macroscopically isotropic and

mirror-symmetric, 87, 100
macroscopically mirror-symmetric, 87

scattering plane, 83, 88
scattering tensor, 39

reciprocity condition for, 40
Schelkunoff equivalent current method, 115
secondary wave, 3
separation of variables method, 113–4, 179,

192–3, 202–5
multi-sphere, 156, 201

shape averaging, 72–3, 334–7
shape distribution, 72–3
single-scattering albedo, 58, 228, 255–6, 284,

293–6, 299, 303, 340, 344
average, 97

single-scattering approximation, 6
size averaging, 72–3, 159–61, 172–3, 335

effects of, 250–2, 279–82, 341
size distribution, 72–3, 160–1, 173, 177,

250–2, 283–6
gamma, 160, 252, 283–6
log normal, 160, 283–6
modified bimodal log normal, 161
modified gamma, 160, 283
modified power law, 161, 283–7
power law, 160, 285

size parameter, 74, 147, 192
effective, 250, 286
major-axis, 178
surface-equivalent-sphere, 178, 308
volume-equivalent-sphere, 308

specific intensity, 77
column vector, 77–8

speed of light, 14
spherical harmonics
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scalar, 360
vector, 373–6

spherical particles, 98–9, 102, 122, 139–42,
158, 214–6, 238–78

anisotropic, 222
Faraday-active, 221
monodisperse, 238–50
polydisperse, 250–73

spherical wave, 36   
spherical wave functions

scalar, 371
vector, 115, 116, 372–8

spheroids, 171–2
optical properties of, 180–2, 185, 203–4,

210, 213, 280–98
with extreme aspect ratios, 307–14

statistical approach, 334–7
stochastically shaped particles, 322
Stokes column vector, 17, 51

circular-polarization, 19, 23, 105–6
additivity of, 28
rotation transformation rule for, 25–6

for quasi-monochromatic light, 27
additivity of, 27, 28

modified, 18, 23
additivity of, 28
rotation transformation rule for, 25

rotation transformation rule for, 24–5
Stokes parameters, 6, 7, 15, 17–8

ellipsometric interpretation of, 19–24
for quasi-monochromatic light, 26

additivity of, 27–8
quadratic inequality for, 27

quadratic identity for, 18
rotation transformation rule for, 24–5

subtraction method, 226, 228
superposition method, 156, 201–2, 204
superposition principle, 37
surface integral equation methods, 200, 205

time-domain, 205
Système International, 384

T matrix, 115, 117, 146
for aggregated particles, 154–8, 201
for rotationally symmetric particles,

148–50, 167–71
orientation-averaged, 127–9, 131
rotation transformation rule for, 119–21

symmetry relations for, 121–2
translation transformation rule for, 125–7
unitarity property of, 122–5, 152

T-matrix computer code
for randomly oriented, rotationally

symmetric particles, 165–80
for randomly oriented two-sphere

clusters, 186–9
for a rotationally symmetric particle in an

arbitrary orientation, 180–6
multi-sphere superposition, 190

T-matrix method, 114, 115–90, 202–5
superposition, 154–8, 201

recursive, 158
temperature, absolute, 3, 63
time, 5, 9
time factor, 5, 15
time-harmonic field, 10
total field, 31, 35, 54–5, 197
transition matrix, see T matrix
translation addition theorem, 126, 156, 157,

201, 378–9
transverse wave, 13, 36

unimoment method, 194
unitarity condition, 124
unpolarized light, 27

Venus clouds, 274–8
volume integral equation, 31–5, 197
volume integral equation method, 197–9

wave equation, vector, 33, 113
wave number, 14
wave vector, 12
wavelength, 15
weak photon localization, see coherent

backscattering
Wentzel–Kramers–Brillouin approximation,

210
Wigner d-functions, 103–4, 362–9, 371, 377
Wigner D-functions, 367–8, 377
Wigner 3j symbols, 141, 379, 381

zenith angle, see angle, polar
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Plate 8.1.  On the left: (a) scanning electron microscope image of a cluster of Bacillus subtilis spores and two-
dimensional angular patterns of scattered intensity (in arbitrary units) in (b) the near-forward direction and (c) the
near-backward direction. The particle was illuminated by a laser beam incident along the positive direction of the x-
axis of the laboratory reference frame.  The horizontal and vertical axes of each diagram show the azimuth and
zenith angles of the scattering direction, respectively. On the right: as on the left, but for a cluster of polystyrene
latex micro-spheres.  (From Holler et al. 1998.)
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Plate 9.1.  Low-resolution color image of the degree of linear polarization QP = 11 ab−  for monodisperse spherical
particles with relative refractive index m = 1.4.
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Plate 9.2.  As in Plate 9.1, but using a finer sampling resolution.
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Plate 9.3.  Top three panels: high-resolution images of Stokes-scattering-matrix-element ratios ,13 aa ,11 ab−  and
12 ab within the super-narrow resonance centered at x ≈ 38.9983, for m = 1.4. Middle three panels: as in the top

panels, but for the ratio 11 ab−  with =Im ,10 6− ,10 5−  and .10 4−  Bottom three panels: the ratios ,13 aa ,11 ab−
and 12 ab versus Θ  and Rm  for x = 38.9983 and .0I =m
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Plate 9.4.  Images of the degree of linear polarization 11 abPQ −= versus effective size parameter and scattering
angle, for spherical particles with m = 1.44 and 0eff =v  (the value for monodisperse particles), 0.01, 0.07, and 0.2.
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(b)  Spheroids, fixed orientation
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(c)  Spheroids, fixed orientation
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21 ======− ϕϑϕϑϕϑϕϑ ZZ  in % versus scaϑ and

size parameter for monodisperse spheres and surface-equivalent oblate spheroids in fixed and random orientations.
In panels (b) and (c), the rotation axis of the spheroids is oriented respectively along the z-axis and along the x-axis
of the laboratory reference frame. The relative refractive index is 1.53 + i0.008 and the spheroid axis ratio
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Plate 10.5.  The top left panel shows the logarithm of the phase function versus scattering angle and effective size
parameter for polydisperse spheres. The three lower diagrams in the left-hand column show the ratio of the phase
function )C(1a  for polydisperse randomly oriented cylinders with LD = 1, 1/2, and 2 and the phase function

)S(1a  for surface-equivalent spheres.  The middle and right-hand columns show 13 aa  and 14 aa  for spheres (top
panels) and for surface-equivalent cylinders (lower three pairs of panels). Each diagram is quantified by the
corresponding color bar at the bottom of the plate. All particles have the same relative refractive index, 1.53 +
i0.008. The distribution of surface-equivalent-sphere radii is given by Eq. (5.246) with 3−=α  and .1.0eff =v
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Plate 10.6.  The ratios ,12 aa  ,11 ab−  and 12 ab for polydisperse spheres and for surface-equivalent randomly
oriented cylinders with LD = 1, 1/2, and 2. The diagrams in each column are quantified using the color bar below
the column. All particles have the same relative refractive index, 1.53 + i0.008. The distribution of surface-
equivalent-sphere radii is given by Eq. (5.246) with 3−=α  and .1.0eff =v
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Plate 10.7.  T-matrix computations of phase function versus scattering angle for monodisperse and polydisperse
spheres and randomly oriented spheroids with a relative refractive index 1.53 + i0.008 at a wavelength 443 nm.
Panel (a) shows results for a monodisperse sphere with a radius 1.163 µm and for surface-equivalent prolate
spheroids with aspect ratios ranging from 1.2 to 2.4. Panel (b) shows similar computations but for a log normal size
distribution with an effective radius 1.163 µm and an effective variance 0.168. Panel (c) demonstrates the effect of
using a spheroid aspect-ratio distribution of finite width; it shows the ensemble-averaged phase functions for
equiprobable shape mixtures of polydisperse prolate spheroids with different aspect-ratio ranges, all centered on

.8.1=ε  Panel (d) shows the phase functions for polydisperse spheres and ensemble-averaged phase functions for
equiprobable shape mixtures of prolate spheroids (green curve), oblate spheroids (blue curve), and prolate and
oblate spheroids together (red curve) with aspect ratios ranging from 1.2 to 2.4 in steps of 0.1. (After Mishchenko
et al. 1997a.)
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(b) Bispheres (fixed orientation)
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(c) Bispheres (fixed orientation)
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(d) Bispheres (random orientation)
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Plate 10.8.  Panel (a): the ratio )0,0;0,()0,0;0,( incincscasca
11

incincscasca
21 ======− ϕϑϕϑϕϑϕϑ ZZ  in % versus

scaϑ  and size parameter for monodisperse single spheres. Panels (b)–(d): the same ratio versus scaϑ  and
constituent-sphere size parameter for monodisperse bispheres with equal touching components in fixed and random
orientations. In panels (b) and (c) the bisphere axis is oriented respectively along the z-axis and along the x-axis of
the laboratory reference frame. The relative refractive index is 1.5 + i0.005.



Plate 10.9.  Compilation of data for the case study on 5 March 1999 of cirrus, contrails, and an Asian dust layer
above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions,
obtained at 1808, 1826, and 1905 UTC (from left to right); backscattered intensity and linear depolarization time-
height displays measured by an upward-looking lidar at a wavelength µm,694.0  the broadband visible and
infrared hemispherical fluxes, and the mid-infrared column brightness temperatures ;bT  and, at the bottom,
expanded views of backscattered intensity (black and white images) and linear depolarization (colored images) at
wavelengths µm 532.0  (bottom left panel) and µm06.1  (bottom right panel) for a time range near the end of the
measurement period. The depolarization displays can be quantified using the inserted color bar.  (From Sassen et
al. 2001.)
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